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Figure S1: Photograph of the levitator setup.
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Figure S2: Deconvoluted Raman spectra of pure water droplet in its liquid form at 297.8 K, and
when it is frozen at 254.0 K.
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Table S1: Peak assignments for the deconvoluted Raman spectrum of the ice crystal made of

pure water at 254.0 K.
Peak | Experimental | Carrier Peak assignment | Literature Reference
wavenumber wavenumber
(cm™) (cm™)
V2 3577 H,O O-H stretch | ~3600 1-3
(surface) (weakly or non H-

bonded OH)

V3i 3372 H>O (bulk) O-H stretch (red- | 3314 2,46
shifted
intermediate  H-
bond)

V3’ 3262 H>0 (bulk) Symmetric  OH | 3270 6
stretch

Vi 3153 H>O Red-shifted O-H | ~3200 12

(deformed) stretch of

deformed
tetrahedral H-
bond

vs' 3143 H>O (bulk) O-H stretch of | 3140 2,68
strong H-bond or
ion stabilized
water

Ve 1589 H0 OH bend ~1600 o-10

Vs 255 SO4* (aq) Translational ~280 7
lattice mode

Vo 232 H,O (bulk) | Translational ~220 7
lattice mode
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Table S2: Peak assignments for the deconvoluted Raman spectrum of the pure water droplet at

297.8 K.
Peak | Experimental | Carrier Peak assignment | Literature Reference
wavenumber wavenumber
(cm™) (cm™)
Vi 3631 H,O O-H stretch (free, | ~3600 !
(surface) non H-bonded
OH)
V2 3564 H,0 O-H stretch | ~3530 12
(surface) (weakly H-
bonded OH)
V3 3425 H>O (bulk) Bulk water O-H | 3435 12-13
intermediate
stretch
V4 3208 H,O O-H stretch of | 3140- ~3200 | %67
(deformed) deformed
tetrahedral H-
bond
Vssw | 3019 H>O (bulk) Intense O-H | ~2800-3000 | '#15
stretching
V6 1608 H,O OH bend ~1600 9-10
Vs 255 SO4* (aq) Translational ~280 7
lattice mode
Vo 232 H,O (bulk) | Translational ~280 7
lattice mode
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Figure S3: (A) Visualization of the freezing process of the levitating seawater droplet with time.
(B) The time-dependent Raman spectra showing the change in the physical state and molecular
structure evolution of seawater droplet during freezing. The broad spectral region ~3800-2800 cm”
!'is the O-H stretching frequencies arising out of different kinds of intermolecular interactions. (C)
Zoomed in time-dependent spectra of the droplet/ice particle at selected times at the 1100-800 cm”
! region where changes related to the sulfate peak are observed.
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Figure S4. (A) Temporal profile of the water/ice features during the aqueous droplet freezing
process. The freezing process is quantified by evaluating the ratios of corresponding areas of two
spectral segments from 3200 to 3100 cm™ and 3440 to 3340 cm™!, which correspond to specific
features of ice and liquid water, respectively. (B) Temporal profile of the sulfate stretching peak
located at around 981 cm™. (C) Temporal profile of the distorted sulfate stretch peak located at
916-951 cm™'. (D) Temporal profile of the bisulfate stretch peak located at around 1013 cm™.
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Table S3: Peak assignments for the deconvoluted Raman spectrum of the aqueous droplet

containing 3.5% MgSO4 solution at 297.8 K as shown in Figure 3(A).

lattice mode

Peak Experimental | Carrier Peak assignment | Literature Reference
wavenumber wavenumber
(cm™) (cm™)
Vi 3641 H,O O-H stretch (non- | 3632 1-3
(surface) H-bonded)
V2 3583 H,0 O-H stretch | ~3600 13
(surface) (weakly or non

H-bonded OH)

V3 3426 H,O (bulk) | Intermediate OH | 3314-3435 | 1213
stretch

V4 3224 H,O (bulk) | O-H stretch of | 3140-~3200 | !-%67
deformed
tetrahedral H-
bond

Vs 3105 H,O (bulk) | O-H stretch of | 3075 !
ideal tetrahedral
H-bond

V6 1637 H,O (bulk) | OH bend ~1600 9-10

V7s 1014 HSO4 (aq) |S-O stretch in | 1050 16
bisulfate

V7 981 SO4* (aq) | Symmetric S-O | 981 17
stretch in sulfate

Vss 614 SO4* (aq) |v4 bending of|613 18
sulfate

Vos 446 SO4* (aq) |v2 bending of | 451 18
sulfate

Vg 260 H>0 (1) Translational ~280 7
lattice mode

Vo 225 H>0 (1) Translational ~220 7

s = sulfate solution being the first time this mode appears.
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Table S4: Peak assignments for the deconvoluted Raman spectrum of the aqueous ice crystal
containing 3.5% MgSOg4 solution at 254.0 K as shown in Figure 3(B).
Peak | Experimental | Carrier Peak assignment Literature Reference
wavenumber wavenumber
(cm™) (cm™)
vis' 3566 H,O O-H stretch of fully | ~3530 12
(surface) coordinated
interfacial ~ water
molecules
V3i 3370 H,O (bulk) | Bulk water O-H |3314-3435 | 2461213
stretch (red-shifted
intermediate ~ H-
bond)
vas' 3252 H,O O-H stretch of | 3208 >
(deformed) | hexagonal crystal
structure
Vai 3152 H,O0 (s) O-H stretch of | 3140-~3200 | !%67
deformed
tetrahedral H- bond
Vs’ 3137 H>O (s) O-H stretch in | 3140-3150 | %67
DDAA ice
Vsew | 2878 H,O (bulk) | Intense O-H | ~2800-3000 | 415
stretching
V6 1625 H,O (bulk) | OH bend ~1600 9-10
vy’ 1014 SO4* Symmetric ~ S-O | 1000 19
(ag/s) stretch of sulfate in
reduced symmetry
environments
V7 980 SO4* (aq) | Symmetric  S-O | 981 17
stretch in sulfate
vg' 916 SO4* Symmetric ~ S-O 18,2021
(ag/s) stretch of sulfate in
reduced symmetry
environments
Vs 602 SO4* (aq) |v4 Dbending of | 613 18
sulfate
Vs 452 SO4* (aq) |v2 bending of | 451 18
sulfate
Vg 280 H20 (s) Translational ~280 [
lattice mode
Vo 227 H2O (s) Translational ~220 7

lattice mode
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Table SS5: Peak assignments for the deconvoluted Raman spectrum of the aqueous droplet

containing 3.5% NaHCOj3 solution at 297.8 K as shown in Figure 4(A).

Peak | Experimental | Carrier Peak Literature Reference
wavenumber assignment wavenumber
(cm™) (cm™)

Vi 3636 H,O (surface) | O-H  stretch | ~3600 !
(free, non H-
bonded OH)

) 3579 H,O (surface) | O-H  stretch | ~3530 12
(weakly H-
bonded OH)

V3 3417 H,0 (bulk) Intermediate 3435 12-13
OH stretch

V4 3221 H>O (bulk) O-H stretch of | 3140-~3200 | %67
deformed
tetrahedral H-
bond

Vs 3106 H,0 (bulk) O-H stretch of | 3075 !
ideal
tetrahedral H-
bond

Vsp* 2620 HCOs5 (aq) CO-H stretch | 2619 22

V6 1627 H>0 (bulk) O-H bend 1630 °-10,23

V7b 1370 HCOs (aq) COgz stretch 1360 22,24

Vsb 1309 HCOs (aq) C-OH bend 1302 22,2425

Vob 1014 HCO; (aq) C-OH stretch | 1014 22,25-26

V10b 676 HCOs (aq) CO; bending | 673 22,24

Vilb 642 HCOs (aq) OCO or HOC | 641 22,24
deformation

Vs 281 H,0 (1) Translational | ~280 71
lattice mode

Vo 222 H,0 (1) Translational | ~220 71
lattice mode

b = bicarbonate solution being the first time this mode appears.

S10




Table S6: Peak assignments for the deconvoluted Raman spectrum of the aqueous ice crystal

containing 3.5% NaHCOj3 solution at 254.0 K as shown in Figure 4(B).

Peak Experimental | Carrier Peak assignment | Literature Reference
wavenumber wavenumber
(cm™) (cm™)
vis' 3574 H,0 O-H stretch of | ~3530 12
(surface) fully coordinated
interfacial water
molecules
V3i 3369 H>O (bulk) O-H stretch | 3314-3435 | 2461213
(intermediate H-
bond)
Vo' 3253 H>O O-H stretch of | 3208 3
(deformed) hexagonal crystal
structure
Vai 3153 H20 (s) O-H stretch of | 3140- ~3200 | !%67
deformed
tetrahedral  H-
bond
Vs’ 3138 H20 (s) O-H stretch in | 3140-3150 | >67
DDAA* ice
Vsb 2622 HCO; (aq) | CO-H stretch 2619 2
V6 1628 H>O (bulk) OH bend ~1600 9-10
Vb 1374 HCOs (aq) COg stretch 1364 22,26
V8b 1309 HCOs (aq) C-OH bend 1300-1312 | 222526
Vob 1018 HCO; (aq) | C-OH stretch 1016 22,25-26
V10b 682 HCOs (aq) | CO; bending 673 2
Viib 647 HCOs (aq) OCO or HOC | 641 22
deformation
Vs 293 H,0 (s) Translational ~280 7
lattice mode
Vo 239 H,0 (s) Translational ~220 7

lattice mode
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Table S7: Peak assignments for the deconvoluted Raman spectrum of the aqueous droplet

containing 3.5% MgSO4and NaHCOs3 1:1 mass ratio solution at 297.8 K as shown in Figure

5(A).
Peak Experimental | Carrier Peak assignment Literature Reference
wavenumber wavenumber
(cm™) (cm™)

Vi 3637 H,O (surface) O-H stretch (free, | ~3600 !
non H-bonded OH)

) 3583 H,O (surface) O-H stretch (weakly | ~3530 12
H-bonded OH)

V3 3417 H,0 (bulk) Intermediate ~ OH | 3435 12-13
stretch

V4 3226 H>0 (bulk) O-H stretch  of | 3140- ~3200 1-2,6-7
deformed
tetrahedral H- bond

Vs’ 3130 H2O (s) O-H stretch in | 3140-3150 2,67
DDAA ice

Vsb 2620 HCOs5 (aq) CO-H stretch 2619 2

Ve 1628 H,0 (bulk) OH bend ~1600 910

Vém 1458 COs% (aq) Asymmetrical 1400-1450 24,27-28
stretching of C-O
from CO3*

V7b 1361 HCO; (aq) CO;s stretch 1364 22,26

Vs 1318 HCO5 (aq) C-OH bend 1300-1312 22,2526

Vob 1013 HCOs5 (aq) C-OH stretch 1016 22,2526

V7 978 SO4* (aq) Symmetric S-0 | 981 17
stretch in sulfate

V10b 681 HCO; (aq) CO: bending 673 22,24

Viib 650 HCOs5 (aq) OCO or HOC | 641 22,24
deformation

Vgs 604 S04* (aq) v4  bending of | 613 18
sulfate

Vos 454 SO4* (aq) v2  bending of | 451 18
sulfate

Vs 295 H,0 (1) Translational lattice | ~280 7
mode

Vo 234 H,0 (1) Translational lattice | ~220 7

mode

m = mixture solution of bicarbonate and sulfate being the first time this mode appears.

S12




Table S8: Peak assignments for the deconvoluted Raman spectrum of the aqueous ice crystal
containing 3.5% MgSO4and NaHCO3 1:1 mass ratio solution at 254.0 K as shown in Figure 5(B).

lattice mode

Peak | Experimental | Carrier Peak assignment Literature Reference
wavenumber wavenumber
(cm™) (cm™)
vis' | 3577 H>O O-H stretch | ~3530 12
(surface) (weakly H-bonded

OH)

vii | 3384 H,O (bulk) | O-H stretch | 3314-3435 2,4-6,12-13
(intermediate ~ H-
bond)

vas' | 3248 H>O O-H stretch of | 3208 >

(deformed) | hexagonal crystal

structure

vai | 3160 H,0 (s) O-H stretch of | 3140- ~3200 1-2,6-7
strong H-bond)

vs' | 3139 H,0 (s) O-H stretch in | 3140-3150 2,67
DDAA ice

vsp | 2610 HCO; (aq) | CO-H stretch 2619 22

V6 1616 H,O (bulk) | OH bend ~1600 9-10

Vom | 1453 COs* (aq) Asymmetrical 1400-1450 24,27-28
stretching of C-O
from CO3*

Vb 1362 HCOs (aq) | COgy stretch 1364 22,26

Vb 1318 HCOs (aq) | C-OH bend 1300-1312 22,25-26

vop | 1012 HCO; (aq) | C-OH stretch 1016 22,25-26

V7 977 SO4* (aq) Symmetric ~ S-O | 981 17
stretch in sulfate

vs' | 943 SO4* (ag/l) | Symmetric ~ S-O 18,2021
stretch of sulfate in
reduced symmetry
environments

Vi, | 638 HCO;3 (aq) | OCO or HOC | 641 22,24
deformation

vos | 466 SO4* (aq) v2 bending of | 456 17-18
sulfate

Vg 290 H>O (s) Translational ~280 7
lattice mode

Vo 239 H,O0 (s) Translational ~220 71

S13




1200000

800000

400000 -

1200000
800000 -

400000 -

1200000 4(B) o
800000
400000 -
0 ' ; ? ; . T

Intensity (arb. units)

12000004 5(B)

1:1 mixture

800000 -

400000 -

T T T T T T ‘I
4000 3800 3600 3400 3200 3000 2800 2600

Wavenumber (cm‘1)

Figure S5: Stacked spectra from Figures 2(B), 3(B), 4(B) and 5(B), showing the comparisons of
deconvoluted bands of the OH-stretching region of the ice crystals at 254.0 K.
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Table S9: Full width at half-maximum (FWHM) for the fitted bands of the deconvoluted OH-
region of the ice crystal of ASW at 254.0 K.

Peak Experimental wavenumber Peak width (cm™)
(cm™)

Vi 3583 100

Vis' 3566 121

V3i 3380 212

Vs’ 3256 64

Vi 3160 259

vs' 3140 65

V5sw 2874 138

Table S10: Full width at half-maximum (FWHM) for the fitted bands of the deconvoluted OH-

region of the ice crystal containing MgSOy4 solution at 254.0 K.

Peak Experimental wavenumber Peak width (cm™)
(cm™)

Vis' 3566 120

V3i 3370 204

Vas' 3252 61

Vai 3152 254

Vs’ 3137 64

V5sw 2878 73

Table S11: Full width at half-maximum (FWHM) for the fitted bands of the deconvoluted OH-

region of the ice crystal containing HCO3 solution at 254.0 K.

Peak Experimental wavenumber Peak width (cm™)
(cm™)

Vis' 3574 118

V3i 3369 208

Vs’ 3253 47

Vai 3153 251

vs' 3138 65
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Table S12: Full width at half-maximum (FWHM) for the fitted bands of the deconvoluted OH-
region of the ice crystal containing 1:1 mixture of MgSO4and HCO3 solution at 254.0 K.

Peak Experimental wavenumber Peak width (cm™)
(cm™)

Vis' 3577 102

V3i 3384 222

Vas' 3248 48

Vi 3160 235

vs' 3139 89
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Figure S6: Stacked spectra from Figures 2(A), 3(A), 4(A) and 5(A), showing the comparisons of
deconvoluted bands of the OH-stretching region of the droplets at 297.8 K.
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Table S13: Full width at half-maximum (FWHM) for the fitted bands of the deconvoluted OH-
region of the ASW droplet at 297.8 K.

Peak Experimental wavenumber Peak width (cm™)
(cm™)

Vi 3622 91

V2 3557 64

V3 3425 252

V4 3223 177

Vs 3095 153

V5swW 2974 91

Table S14: Full width at half-maximum (FWHM) for the fitted bands of the deconvoluted OH-
region of the MgSO4 droplet at 297.8 K.

Peak Experimental wavenumber Peak width (cm™)
(cm™)

Vi 3641 71

V2 3583 102

V3 3426 238

V4 3224 189

Vs 3105 96

Table S15: Full width at half-maximum (FWHM) for the fitted bands of the deconvoluted OH-
region of the HCO3 droplet at 297.8 K.

Peak Experimental wavenumber Peak width (cm™)
(cm™)

Vi 3636 74

V2 3579 112

V3 3417 240

V4 3221 182

Vs 3106 96
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Table S16: Full width at half-maximum (FWHM) for the fitted bands of the deconvoluted OH-

region of the 1:1 mixture of MgSO4and HCOs3 droplet at 297.8 K.

Peak Experimental wavenumber Peak width (cm™)
(cm™)

Vi 3637 66

V2 3583 100

V3 3417 245

V4 3226 164

vs' 3130 97
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