

pubs.acs.org/JACS Communication

Interstellar Formation of the Elusive Phosphanyloxyphosphane (H₂POPH₂) and Phosphanylphosphinous Acid (H₂PPHOH) via Nonequilibrium Chemistry: Precursors to the Phosphate Backbone of Nucleotides

Jia Wang, Bing-Jian Sun, Alexandre Bergantini, Zesen Wang, Andrew M. Turner, Agnes H. H. Chang,* and Ralf I. Kaiser*

Cite This: J. Am. Chem. Soc. 2025, 147, 38987-38991

ACCESS I

III Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: The P-O-P moiety plays a central role in inorganic and biological systems and is considered to be a critical precursor to the phosphate backbone of nucleotides. However, the isolation of the simplest prototype, phosphanyloxyphosphane (H_2 POP H_2), has remained elusive due to its high susceptibility to hydrolysis. Here, we report the first preparation of phosphanyloxyphosphane and its isomer phosphanylphosphinous acid (H_2 PPHOH) in low-temperature phosphine (PH_3)—carbon dioxide (CO_2) ices upon exposure to galactic cosmic ray proxies in the form of energetic electrons. These isomers were isolated and identified in the gas phase using tunable vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry combined with isotopic labeling studies. Our findings not only suggest that the hitherto undetected phosphanyloxyphosphane and phosphanylphosphinous acid can be synthesized in phosphine-rich extraterrestrial ices but also advance our fundamental understanding of the formation of P-O-P and P-P-O linkages via nonequilibrium chemistry under astrophysical conditions.

C ince the first detection of phosphorus monoxide (PO) in the interstellar medium (ISM) nearly two decades ago, phosphorus- and oxygen-containing molecules have attracted particular attention from the astronomy,^{2,3} astrobiology,⁴ astrochemistry,⁵ physical organic chemistry,⁶ and theoretical chemistry communities.^{7–9} This broad interest is mainly due to their crucial roles as molecular precursors in the synthesis of nucleotides, phospholipids, and sugar phosphates, which are essential to nucleic acid metabolism and glycolysis (Figure 1).4,10,11 Although only eight simple phosphorus-bearing molecules have been identified in the ISM, 12,13 more complex phosphorus molecules such as alkylphosphonic acids (RP(O)- $(OH)_2$) with R being an alkyl group (C_nH_{2n+1}) and phosphates (PO₄³⁻) have been detected in the Murchison meteorite at abundances as high as 9 nmol g^{-1} and 25 μ mol g^{-1} , respectively,¹⁴ suggesting potential exogenous delivery of phosphorus to early Earth via meteorites. 15 Laboratory experiments have provided compelling evidence that alkylphosphonic acids and phosphorus oxoacids can be synthesized abiotically through energetic processing of low-temperature interstellar ice analogs composed of water (H2O), carbon dioxide (CO₂), methane (CH₄), and phosphine (PH₃) by galactic cosmic ray (GCR) proxies. 5,16 However, despite the astrobiological significance of phosphorus- and oxygen-bearing molecules, the formation mechanisms of the P-O-P linkage, which can play a crucial role in prebiotic phosphorus chemistry, under astrophysical conditions have remained

Analogous to the C-C bond in organic chemistry, the P-O-P linkage is of fundamental importance in inorganic and

biological systems; however, due to its high susceptibility to hydrolysis, it is naturally present solely as a product of synthesis by living organisms.¹⁷ Enzymes facilitate rapid hydrolysis by transiently forming P-O-P bridges; for example, the aspartyl phosphate intermediate in sarcoplasmic reticulum Ca2+-ATPase (SERCA) relies on a more labile bridging P-O bond to achieve a hydrolysis rate enhancement of $10^{11}-10^{15}$ times. Remarkably, molecules bearing a P-O-P linkage serve as key precursors to the phosphate backbone of nucleotides such as ADP and ATP (Figure 1). In ATP, the high-energy P-O-P bonds store energy due to repulsion between negatively charged phosphates, and breaking one, such as the conversion of ATP to ADP and inorganic phosphate, releases energy because the newly formed P-O and O-H bonds are stronger and more stable than those that are broken.¹⁹ Therefore, elucidating the fundamental formation pathways of such species is essential to advancing our understanding of the molecular mass growth processes leading to phosphorus-bearing biomolecules that are necessary for the origins of life. However, even the isolation of their simplest prototype, phosphanyloxyphosphane (H2POPH2, 1), has remained elusive as of now.

Received: July 22, 2025 Revised: October 10, 2025 Accepted: October 13, 2025 Published: October 17, 2025

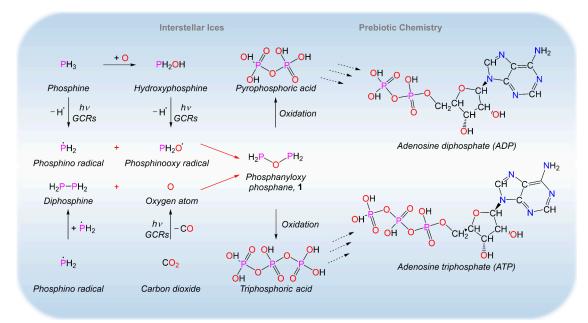


Figure 1. Proposed formation pathways of phosphanyloxyphosphane (H₂POPH₂, 1) in phosphine-rich and carbon dioxide-rich interstellar ices and its potential role as a molecular building block of the phosphate backbone of ADP and ATP.

Here, we report the first preparation of phosphanyloxyphosphane (H₂POPH₂, 1) and its isomer phosphanylphosphinous acid (H₂PPHOH, 2). This is accomplished in lowtemperature (5 K) interstellar model ices containing phosphine (PH₃) and carbon dioxide (CO₂) exposed to GCR proxies in the form of energetic electrons. The irradiation doses are equivalent to $(8 \pm 2) \times 10^6$ years of GCR exposure in interstellar ices within cold molecular clouds (Supporting Information).²¹ Utilizing tunable vacuum ultraviolet (VUV) photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) combined with isotopic labeling studies, 1 and 2 were identified in the gas phase during the temperatureprogrammed desorption (TPD) of irradiated phosphinecarbon dioxide ices based on their desorption profiles and computed adiabatic ionization energies (IEs). These findings provide direct evidence for the facile synthesis of P-O-P and P-P-O bond linkages via nonequilibrium chemistry in phosphine-rich extraterrestrial ices, shedding light on the potential formation pathways of prebiotic phosphorus species. PH₃ has been detected in the circumstellar envelope of the carbon-rich star IRC+10216 at an abundance of 10⁻⁸ relative to hydrogen $(H_2)^{22}$ and is believed to be a primary phosphorus carrier in comet 67P/Churyumov-Gerasimenko.²³ On interstellar grain surfaces, PH3 forms via successive hydrogenation of atomic phosphorus, analogous to the formation of water from atomic oxygen and hydrogen.²⁴ CO₂ is one of the most abundant constituents of interstellar ices with an abundance of up to 40% relative to water. 25 Therefore, our results suggest that the hitherto elusive isomers 1 and 2 can be synthesized in phosphine- and carbon dioxide-rich interstellar ices. Once formed, isomers 1 and 2 may serve as key precursors to hypophosphoric acid (P2H4O6) and polyphosphates such as pyrophosphoric acid (P₂H₄O₇) and triphosphoric acid (P₃H₅O₁₀) (Figure 1). These compounds could have been incorporated into planetesimals during the gravitational collapse of molecular clouds into star-forming regions. As these objects collided with the early Earth, they may survive the entrance of the meteorite into the Earth's atmosphere, 15

contributing to a critical exogenous source of phosphatecontaining precursors to biomolecules such as nucleotides.

The photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) technique was utilized to identify individual H_4P_2O isomers based on isomer selective photoionization in the temperature-programmed desorption (TPD) phase and their computed adiabatic ionization energies. The three isomers of H_4P_2O are phosphanyloxyphosphane (H_2POPH_2 , 1), phosphanylphosphinous acid (H_2PPHOH , 2), and diphosphine monoxide ($H_2PP(O)H_2$, 3) (Figure 2). In

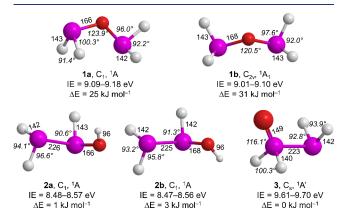


Figure 2. Molecular structures of H_4P_2O isomers 1–3. Bond length (millimeters), angles (italic), point groups, electronic ground states, and relative energies (ΔE) are shown. The adiabatic ionization energies (IEs) are calculated at the CCSD(T)/CBS//B3LYP/cc-pVTZ level.

the experiments, VUV photons with energies of 10.86, 9.60, 8.77, and 8.11 eV were utilized to selectively photoionize distinct H_4P_2O isomers in the gas phase during TPD. At a photon energy of 10.86 eV, the TPD profile of mass-to-charge ratio (m/z) of 82 exhibits a broad sublimation event spanning 180–265 K (Figure 3). Given the molecular weights of the reactants of PH_3 and CO_2 , the ion signal of m/z = 82 can

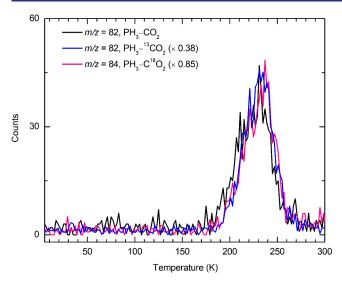


Figure 3. Temperature-programmed desorption (TPD) profiles of irradiated phosphine-carbon dioxide (PH3-CO2) ice and its isotopically labeled (PH₃-¹³CO₂ and PH₃-C¹⁸O₂) ices recorded at 10.86 eV.

correspond to compounds with molecular formulas C₆H₁₀, C₅H₆O₂, C₄H₂O₂, C₄H₃P₂, H₄P₂O₃, H₃PO₃, and/or H₂O₅. To confirm the molecular formula, experiments were conducted using isotopically labeled PH₃-¹³CO₂ ice and PH₃-C¹⁸O₂ ice (Figure 3) to eventually assign the ion signal of m/z = 82 to the H_4P_2O isomers. In particular, the TPD profile of m/z=82from irradiated PH₃- 13 CO₂ ice closely matches that of m/z =82 from irradiated PH₃-CO₂ ice, indicating the absence of the carbon atom in the molecular formula. In contrast, replacing PH₃-CO₂ ice with PH₃-C¹⁸O₂ ice leads to a 2 amu mass shift, from m/z = 82 to 84, confirming the incorporation of only one oxygen atom. Therefore, the sublimation event of m/z = 82from irradiated PH3-CO2 ice can be clearly attributed to a molecular species with the formula H₄P₂O.

At a photon energy of 10.86 eV, the TPD profile of m/z =82 (H₄P₂O⁺) from irradiated PH₃-CO₂ ice can be deconvoluted into two Gaussian components peaking at 210 (peak I) and 234 K (peak II) (Figure 4a). A blank experiment using PH3-CO2 ice was carried out at 10.86 eV under identical conditions but without electron irradiation; no sublimation event at m/z = 82 was detected, confirming that peaks I and II result from electron-induced processing of the ices. At 10.86 eV, all three H_4P_2O isomers 1 (IE = 9.01-9.18 eV), 2 (IE = 8.47-8.57 eV), and 3 (IE = 9.61-9.70 eV) can be photoionized (Figure 2, Table S1). Therefore, both peaks can be linked to 1, 2, and/or 3. Thereafter, the photon energy was reduced to 9.60 eV, at which 3 (IE = 9.61-9.70 eV) cannot be ionized. At 9.60 eV, ion signals of peaks I and II remain (Figure 4b), indicating that no evidence of the formation of 3 can be provided. The computed IEs were compared with experimental measurements, yielding combined error bounds of -0.03/+0.06 eV (Table S2). For isomer 3, the calculated IE is 9.67 eV, corresponding to an effective experimental range of 9.61-9.70 eV after applying a -0.03 eV correction for thermal and Stark effects; this range remains above the 9.60 eV photon energy used in the experiments. Moreover, since the photoionization cross section is expected to be very small when the photon energy closely matches the IE, only a weak ion signal would typically be observed. However, comparable ion counts were observed for the lower sublimation event

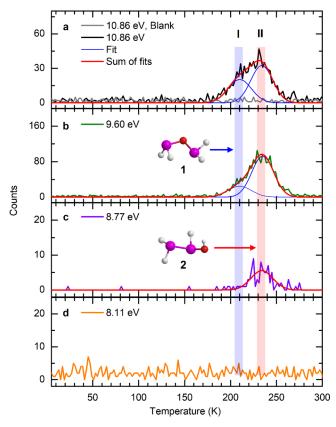


Figure 4. TPD profiles of the ion signal at m/z = 82 from irradiated PH₃-CO₂ ice, recorded at photon energies of 10.86 eV (a), 9.60 eV (b), 8.77 eV (c), and 8.11 eV (d).

(peak 1) at 10.86 eV (358 \pm 27) and 9.60 eV (398 \pm 23), further indicating the lack of detection of 3. Lowering the photon energy to 8.77 eV, sufficient to ionize 2 (IE = 8.47-8.57 eV) but not 1 (IE = 9.01-9.18 eV), results in the disappearance of peak I, while peak II remains (Figure 4c). This result suggests that peak I corresponds to 1, whereas peak II is attributed to 2. When the photon energy was further reduced to 8.11 eV, at which none of the H₄P₂O isomers can be ionized, no sublimation event was detected at m/z = 82(Figure 4d), confirming that the ion signal of peak II arises from 2. Overall, the PI-ReToF-MS experiments demonstrated the gas-phase detection of isomers 1 and 2.

Having provided compelling evidence for the formation of phosphanyloxyphosphane (1) and its isomer phosphanylphosphinous acid (2) in phosphine-carbon dioxide ices under astrophysical conditions, we now turn to their potential formation mechanisms. The initial step involves phosphorus-hydrogen bond rupture in phosphine to generate the phosphino (PH2) radical and atomic hydrogen (H) via reaction 1, 26 which is endoergic by 340 \pm 4 kJ mol^{-1,27,28} This energy is supplied by the GCR proxies in the form of energetic electrons. Diphosphine (H₂PPH₂) can subsequently form via a barrierless radical-radical recombination of two phosphino radicals through reaction 2,29 which is exoergic by $236 \pm 4 \text{ kJ mol}^{-1.27}$ Simultaneously, electron irradiation leads to the radiolysis of carbon dioxide, forming electronically excited oxygen atoms $(O(^1D))$ via reaction 3 with an endoergicity of 732 kJ mol $^{-1}$. As demonstrated in previous laboratory experiments, the oxygen atom can undergo barrierless insertion into the phosphorus-hydrogen bond of phosphine, yielding hydroxyphosphine (PH₂OH) with a reaction exoergicity of 798 kJ mol $^{-1}$ (reaction 4). Note that the diphosphine (H₂PPH₂) and/or hydroxyphosphine (PH₂OH) were also tentatively detected via FTIR spectroscopy at 2283 cm $^{-1}$ in irradiated PH₃–CO₂ ice (Supporting Information).

$$PH_3(X^1A_1) \to \dot{P}H_2(X^2B_1) + \dot{H}(^2S)$$
 (1)

$$\dot{P}H_2(X^2B_1) + \dot{P}H_2(X^2B_1) \to H_2PPH_2(X^1A)$$
 (2)

$$CO_2(X^l\Sigma_g^+) \rightarrow CO(X^l\Sigma^+) + O(^lD)$$
 (3)

$$PH_3(X^1A_1) + O(^1D) \to PH_2OH(X^1A')$$
 (4)

The unimolecular decomposition of hydroxyphosphine (PH₂OH) can yield atomic hydrogen plus either a phosphinooxy (PH₂O) radical or a hydroxyphosphino (PHOH) radical via reactions 5 and 6, respectively. Reaction 6 is endoergic by 321 kJ $\text{mol}^{-1}.^{28,33}$ Once formed through ionizing radiation, these species can remain trapped within the ice matrix due to limited molecular mobility at 5 K,²⁰ thereby serving as precursors to the formation of H₄P₂O isomers.

$$PH_2OH \rightarrow PH_2\dot{O} + \dot{H} \tag{5}$$

$$PH_2OH \rightarrow \dot{P}HOH + \dot{H}$$
 (6)

Finally, isomers 1 and 2 can be formed through barrierless radical—radical recombination of the phosphino ($\dot{P}H_2$) radical with either the phosphinooxy ($PH_2\dot{O}$) radical (reaction 7) or the hydroxyphosphino ($\dot{P}HOH$) radical (reaction 8). The radical—radical recombination can occur either during irradiation at 5 K or during TPD at higher temperatures. Alternatively, the insertion of an electronically excited oxygen atom into the phosphorus—phosphorus and phosphorus—hydrogen bond of diphosphine also leads to the formation of 1 and 2 via reactions 9 and 10, respectively. It is worth noting that isomer 3 may form via the addition of an oxygen atom to diphosphine. However, no evidence for its formation could be provided under our experimental conditions, which may result from competing reaction pathways of oxygen atoms in the ice and/or a small production yield below our detection limit.

$$\dot{P}H_2 + PH_2\dot{O} \rightarrow H_2POPH_2(1) \tag{7}$$

$$\dot{P}H_2 + \dot{P}HOH \rightarrow H_2PPHOH(2) \tag{8}$$

$$H_2PPH_2 + O \rightarrow H_2POPH_2(\mathbf{1}) \tag{9}$$

$$H_2PPH_2 + O \rightarrow H_2PPHOH(2)$$
 (10)

In conclusion, the hitherto elusive phosphanyloxyphosphane ($\rm H_2POPH_2$, 1) and its isomer phosphanylphosphinous acid ($\rm H_2PPHOH$, 2) have been synthesized and detected for the first time. These molecules were formed in phosphine—carbon dioxide ices irradiated at low temperatures of 5 K by energetic electrons, which simulate secondary electrons generated by the interaction of GCRs with interstellar ices in cold molecular clouds. Utilizing tunable VUV PI-ReToF-MS and isotopic labeling experiments, 1 and 2 were isolated and identified in the gas phase during TPD. Assuming Maxwell—Boltzmann velocity distribution for the thermal sublimation of molecules from the ices, ³⁴ an average molecular velocity of 240 m s⁻¹ was determined for these isomers subliming at around 220 K. Given the 2.0 \pm 0.5 mm distance between the photoionization

region and ice surface, the lifetimes of neutral 1 and 2 in the gas phase exceed $8\pm 2~\mu s$. The formation of isomers 1 and 2 is initiated by endoergic bond-cleavage of phosphine and carbon dioxide via nonequilibrium chemistry, followed by either radical—radical recombination via reactions 7 and 8 or oxygenatom insertion through reactions 9 and 10. These pathways underscore the pivotal role of GCR-induced nonequilibrium chemistry in facilitating the formation of novel P–O–P and P–P–O bond linkages within phosphine-rich extraterrestrial ices. These findings advance our fundamental understanding of the plausible abiotic routes toward complex phosphorus oxoacids, shedding light on the formation of biorelevant phosphorus-containing molecules in deep space.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.5c12481.

Experimental and computational methods, IEs and relative energies of H_4P_2O isomers, error analysis of computed IEs, infrared spectra results, VUV generation parameters, Cartesian coordinates, harmonic frequencies, infrared intensities of calculated structures (PDF)

AUTHOR INFORMATION

Corresponding Authors

Agnes H. H. Chang — Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan; Email: hhchang@gms.ndhu.edu.tw

Ralf I. Kaiser — W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States; Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States; orcid.org/0000-0002-7233-7206; Email: ralfk@hawaii.edu

Authors

Jia Wang – W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States; Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States

Bing-Jian Sun — Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan

Alexandre Bergantini – W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States; Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States

Zesen Wang — W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States; Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States

Andrew M. Turner – W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States; Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.5c12481

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was funded by the U.S. National Science Foundation (NSF), Division of Astronomical Sciences, under grant AST-2403867 (R. I. K.). We acknowledge the W. M. Keck Foundation and the University of Hawaii at Manoa for funding the construction of the experimental setup. B.-J. S. and A. H. H. C. thank the National Center for High-performance Computer in Taiwan for providing the computer resources.

REFERENCES

- (1) Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M. Identification of phosphorus monoxide ($X^2\Pi r$) in VY Canis Majoris: Detection of the first P-O bond in space. *Astrophys. J.* **2007**, *666*, L29–L32.
- (2) Rivilla, V. M.; García De La Concepción, J.; Jiménez-Serra, I.; Martín-Pintado, J.; Colzi, L.; Tercero, B.; Megías, A.; López-Gallifa, Á.; Martínez-Henares, A.; Massalkhi, S.; et al. Ionize hard: Interstellar PO⁺ detection. *Front. Astron. Space Sci.* **2022**, *9*, 829288.
- (3) Koelemay, L. A.; Gold, K. R.; Ziurys, L. M. Phosphorus-bearing molecules PO and PN at the edge of the Galaxy. *Nature* **2023**, *623*, 292–295.
- (4) Powner, M. W.; Gerland, B.; Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. *Nature* **2009**, *459*, 239–242.
- (5) Turner, A. M.; Bergantini, A.; Abplanalp, M. J.; Zhu, C.; Góbi, S.; Sun, B.-J.; Chao, K.-H.; Chang, A. H. H.; Meinert, C.; Kaiser, R. I. An interstellar synthesis of phosphorus oxoacids. *Nat. Commun.* **2018**, *9*, 3851.
- (6) Chu, X.; Qian, W.; Lu, B.; Wang, L.; Qin, J.; Li, J.; Rauhut, G.; Trabelsi, T.; Francisco, J. S.; Zeng, X. The triplet hydroxyl radical complex of phosphorus monoxide. *Angew. Chem., Int. Ed.* **2020**, 59, 21949–21953.
- (7) Sanz-Novo, M.; Redondo, P.; Sánchez, C. I.; Largo, A.; Barrientos, C.; Sordo, J. Á. Structure and spectroscopic insights for CH₃PCO isomers: A high-level quantum chemical study. *J. Phys. Chem. A* **2024**, *128*, 4083–4091.
- (8) Fernández-Ruz, M.; Jiménez-Serra, I.; Aguirre, J. A theoretical approach to the complex chemical evolution of phosphorus in the interstellar medium. *Astrophys. J.* **2023**, *956*, 47.
- (9) García de la Concepción, J.; Cavallotti, C.; Barone, V.; Puzzarini, C.; Jiménez-Serra, I. Relevance of the P+O₂ reaction for PO formation in astrochemical environments: Electronic structure calculations and kinetic simulations. *Astrophys. J.* **2024**, *963*, 142.
- (10) Maciá, E. The role of phosphorus in chemical evolution. *Chem. Soc. Rev.* **2005**, 34, 691–701.
- (11) Westheimer, F. H. Why nature chose phosphates. *Science* **1987**, 235, 1173–1178.
- (12) Fontani, F. Observations of phosphorus-bearing molecules in the interstellar medium. Front. Astron. Space Sci. 2024, 11, 1451127.
- (13) McGuire, B. A. 2021 Census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. *Astrophys. J., Suppl. Ser.* 2022, 259, 30.
- (14) Cooper, G. W.; Onwo, W. M.; Cronin, J. R. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite. *Geochim. Cosmochim. Acta* **1992**, *56*, 4109–4115.
- (15) Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. *Nature* **2001**, *414*, 879–883.
- (16) Turner, A. M.; Abplanalp, M. J.; Bergantini, A.; Frigge, R.; Zhu, C.; Sun, B.-J.; Hsiao, C.-T.; Chang, A. H. H.; Meinert, C.; Kaiser, R. I. Origin of alkylphosphonic acids in the interstellar medium. *Sci. Adv.* **2019**, *5*, No. eaaw4307.
- (17) Ewig, C. S.; Van Wazer, J. R. Ab initio structures of phosphorus acids and esters. 3. The phosphorus-oxygen-phosphorus bridged phosphinic compounds $H_4P_2O_{2n-1}$ for n=1 to 4. *J. Am. Chem. Soc.* 1988, 110, 79–86.

- (18) Barth, A.; Bezlyepkina, N. P-O bond destabilization accelerates phosphoenzyme hydrolysis of sarcoplasmic reticulum Ca²⁺-ATPase. *J. Biol. Chem.* **2004**, *279*, 51888–51896.
- (19) Fontecilla-Camps, J. C. The complex roles of adenosine triphosphate in bioenergetics. *ChemBioChem.* **2022**, 23, No. e202200064.
- (20) Wang, J.; Zhang, C.; Marks, J. H.; Evseev, M. M.; Kuznetsov, O. V.; Antonov, I. O.; Kaiser, R. I. Interstellar formation of lactaldehyde, a key intermediate in the methylglyoxal pathway. *Nat. Commun.* **2024**, *15*, 10189.
- (21) Yeghikyan, A. G. Irradiation of dust in molecular clouds. II. Doses produced by cosmic rays. *Astrophysics* **2011**, *54*, 87–99.
- (22) Agúndez, M.; Cernicharo, J.; Decin, L.; Encrenaz, P.; Teyssier, D. Confirmation of circumstellar phosphine. *Astrophys. J. Lett.* **2014**, 790, L27.
- (23) Altwegg, K.; Balsiger, H.; Bar-Nun, A.; Berthelier, J.-J.; Bieler, A.; Bochsler, P.; Briois, C.; Calmonte, U.; Combi, M. R.; Cottin, H.; et al. Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko. *Sci. Adv.* **2016**, *2*, No. e1600285.
- (24) Jing, D.; He, J.; Brucato, J.; De Sio, A.; Tozzetti, L.; Vidali, G. On water formation in the interstellar medium: Laboratory study of the O+D reaction on surfaces. *Astrophys. J. Lett.* **2011**, 741, L9.
- (25) Gibb, E. L.; Whittet, D. C. B.; Boogert, A. C. A.; Tielens, A. G. G. M. Interstellar ice: The infrared space observatory legacy. *Astrophys. J., Suppl. Ser.* **2004**, *151*, 35–73.
- (26) Turner, A. M.; Abplanalp, M. J.; Kaiser, R. I. Probing the Carbon-Phosphorus Bond Coupling in Low-Temperature Phosphine (PH₃)-Methane (CH₄) Interstellar Ice Analogues. *Astrophys. J.* **2016**, *819*, 97.
- (27) Matus, M. H.; Nguyen, M. T.; Dixon, D. A. Heats of formation of diphosphene, phosphinophosphinidene, diphosphine, and their methyl derivatives, and mechanism of the borane-assisted hydrogen release. *J. Phys. Chem. A* **2007**, *111*, 1726–1736.
- (28) Ruscic, B.; Bross, H. Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network; Argonne National Lab, 2021.
- (29) Turner, A. M.; Abplanalp, M. J.; Chen, S. Y.; Chen, Y. T.; Chang, A. H. H.; Kaiser, R. I. A photoionization mass spectroscopic study on the formation of phosphanes in low temperature phosphine ices. *Phys. Chem. Chem. Phys.* **2015**, *17*, 27281–27291.
- (30) Bennett, C. J.; Jamieson, C.; Mebel, A. M.; Kaiser, R. I. Untangling the formation of the cyclic carbon trioxide isomer in low temperature carbon dioxide ices. *Phys. Chem. Chem. Phys.* **2004**, *6*, 735–746.
- (31) Durig, J. R.; Shen, Z.; Zhao, W. Conformational stability, structural parameters, and vibrational frequencies from ab initio calculations for biphosphine. *J. Mol. Struct.* **1996**, *375*, 95–104.
- (32) Withnall, R.; Andrews, L. Infrared spectra of oxygen atomphosphine reaction products trapped in solid argon. *J. Phys. Chem.* **1988**, *92*, 4610–4619.
- (33) Haworth, N. L.; Bacskay, G. B. Heats of formation of phosphorus compounds determined by current methods of computational quantum chemistry. *J. Chem. Phys.* **2002**, *117*, 11175–11187.
- (34) Wang, J.; Marks, J. H.; Turner, A. M.; Mebel, A. M.; Eckhardt, A. K.; Kaiser, R. I. Gas-phase detection of oxirene. *Sci. Adv.* **2023**, *9*, No. eadg1134.