Electronic Supporting Information

Elucidating the Chemical Dynamics of the Elementary Reactions of the 1-Propynyl Radical $\left(\mathrm{CH}_{3} \mathrm{CC} ; \mathrm{X}_{2} \mathrm{~A}^{\mathbf{1}}\right)$ with 2-Methylpropene $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2} ; \mathbf{X}^{1} \mathbf{A}_{1}\right)$

Iakov A. Medvedkov, ${ }^{\text {a }}$ Anatoliy A. Nikolayev, ${ }^{\text {b }}$ Zhenghai Yang, ${ }^{a}$ Shane J. Goettl, ${ }^{a}$ Alexander M. Mebel, ${ }^{\text {c* }}$ Ralf I. Kaiser ${ }^{{ }^{*}}$

${ }^{\text {a }}$ Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
${ }^{b}$ Samara National Research University, Samara 443086, Russia
${ }^{c}$ Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA

Corresponding to: ralfk@hawaii.edu; mebela@fiu.edu

Contents

1. Discussion of the full potential energy surface (PES) of the reaction of 1-propynyl with 2-methylpropene. 3
2. Discussion of the probable sources of background signal at $m / z 78,79$ and 804
3. RRKM calculations results 4
4. Full potential energy surface for the bimolecular reaction of the 1-propynyl radical $\left(\mathrm{CH}_{3} \mathrm{CC}\right.$; $\left.\mathrm{X}^{2} \mathrm{~A}_{1}\right)$ with 2-methylpropene $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2} ; \mathrm{X}^{1} \mathrm{~A}^{\prime}\right)$ calculated at the $\operatorname{CCSD}(\mathrm{T})$-F12/cc- $\mathrm{pVTZ}-\mathrm{F} 12 / / \omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory 7
5. References 12

1. Discussion of the full potential energy surface (PES) of the reaction of 1-propynyl with 2-methylpropene.

Reaction starts with an attack of 1-propynyl radical without any entrance barrier to one of the two chemically inequivalent carbon atoms C 1 or C 2 in 2-methylpropene via addition with its radical center to the $\mathrm{C} 1=\mathrm{C} 2$ double bond. This leads to doublet radical intermediates i1 and/or i4. Both intermediates can be interconverted through the three-carbon ring closure steps via $\mathbf{i} 2$ and $\mathbf{i 3}$ intermediates. $\mathbf{i 4}$ can isomerize via two distinct $[1,2-\mathrm{H}]$ shifts: (1) from the CH_{3} group of the $\mathrm{C}_{4} \mathrm{H}_{8}$ moiety to $\mathbf{i 5}$ or (2) from the CH_{2} group at the C 1 -position to form $\mathbf{i 6}$. The formation of $\mathbf{p} \mathbf{1} \mathbf{- p} \mathbf{3}$ products is discussed in the main text of the manuscript (4. Discussion), here we will focus on the pathways to less important, according to the RRKM calculations (Table S1), products cis/transp4 and p7-p25 (Fig. S1-S5).
1.1 Acyclic products cis/trans-p4 and p7-p10 (Fig. S1 and S2)

Products p7 and p8 (Fig. S1-S2) are formed from i5 via propene and methyl loss channels, respectively. Intermediate $\mathbf{i 6}$ leads to cis- and trans- isomers of hex-2-en-4-yne (cis/trans-p4) via methyl elimination and to 5-methylhexa-1,2,3-triene (p9) through the hydrogen elimination exit channels. The product p10 only can be formed via an H-loss form i2 or $\mathbf{i 3}$.

1.2 Cyclic products p11-p20 containing a five-membered ring (Fig. S3 - S4)

The 'bottle-neck' step on the way to cyclic products is a five-membered ring closure in i5 with an energy barrier of $76 \mathrm{~kJ} \mathrm{~mol}^{-1}$ that leads to i9. Further, $\mathbf{i} 9$ can isomerize via two distinct $[1,2-\mathrm{H}]$ shifts: (1) from the CH_{2} group of the 2-methylpropene moiety to form $\mathbf{i 1 0}$ or (2) from the methyl group of the 1-propynyl moiety to form i14. Starting from i10 and i14, ten distinct products $\mathbf{p 1 1}$ p20 containing five-membered rings can be formed via the pathways summarized below:

$$
\begin{aligned}
& \mathrm{i} 10 \rightarrow \mathrm{p} 11+\mathrm{CH}_{3} ; \\
& \mathrm{i} 10 \rightarrow \mathrm{p} 14 / \mathrm{p} 15 / \mathrm{p} 16+\mathrm{H} ; \\
& \mathrm{i} 10 \rightarrow \mathrm{i} 13 \rightarrow \mathrm{p} 12+\mathrm{CH}_{3} ; \\
& \mathrm{i} 10 \rightarrow \mathrm{i} 13 \rightarrow \mathrm{p} 13 / \mathrm{p} 15+\mathrm{H} ; \\
& \mathrm{i} 10 \rightarrow \mathrm{i} 11 \rightarrow \mathrm{i} 13 \rightarrow \mathrm{p} 12+\mathrm{CH}_{3} ; \\
& \mathrm{i} 10 \rightarrow \mathrm{i} 11 \rightarrow \mathrm{i} 13 \rightarrow \mathrm{p} 13 / \mathrm{p} 15+\mathrm{H} \\
& \mathrm{i} 10 \rightarrow \mathrm{i} 11 \rightarrow \mathrm{p} 16+\mathrm{H} ; \\
& \mathrm{i} 10 \rightarrow \mathrm{i} 12 \rightarrow \mathrm{p} 13 / \mathrm{p} 14 / \mathrm{p} 17+\mathrm{H} ; \\
& \mathrm{i} 14 \rightarrow \mathrm{p} 16+\mathrm{H} ; \\
& \mathrm{i} 14 \rightarrow \mathrm{i} 15 \rightarrow \mathrm{p} 16 / \mathrm{p} 17+\mathrm{H} ; \\
& \mathrm{i} 14 \rightarrow \mathrm{i} 15 \rightarrow \mathrm{p} 18+\mathrm{CH}_{3} ; \\
& \mathrm{i} 14 \rightarrow \mathrm{i} 15 \rightarrow \mathrm{i} 16 \rightarrow \mathrm{p} 17 / \mathrm{p} 19 / \mathrm{p} 20+\mathrm{H} .
\end{aligned}
$$

1.3 Cyclic products p21-p25 containing a six-membered ring (Fig. S5)

Intermediate $\mathbf{i 1 0}$ can undergo a hydrogen shift from the methyl group of the 1-propynyl moiety to the five-membered ring (i11) followed by the ring expansion (i11 $\rightarrow \mathbf{i 1 7} \rightarrow \mathbf{i 1 8}$) that incorporates all the 1-propynyl carbon atoms into the newly formed six-membered ring. Isomers $\mathbf{p 2 1} \mathbf{- \mathbf { p } 2 5}$ can be formed from $\mathbf{i 1 8}$ via the pathways summarized below:
$\mathrm{i} 18 \rightarrow \mathrm{p} 24 / \mathrm{p} 25+\mathrm{H}$;
$\mathrm{i} 18 \rightarrow \mathrm{i} 19 \rightarrow \mathrm{p} 21+\mathrm{CH}_{3}$;
$\mathrm{i} 18 \rightarrow \mathrm{i} 19 \rightarrow \mathrm{p} 23 / \mathrm{p} 25+\mathrm{H}$;
$\mathrm{i} 18 \rightarrow \mathrm{i} 20 \rightarrow \mathrm{p} 21+\mathrm{CH}_{3}$;
$\mathrm{i} 18 \rightarrow \mathrm{i} 20 \rightarrow \mathrm{p} 22 / \mathrm{p} 24+\mathrm{H}$.

2. Discussion of the probable sources of background signal at $\boldsymbol{m} / z 78,79$ and 80

Since the highly reactive 1-propynyl radical $\left(\mathrm{CH}_{3} \mathrm{CC}\right)$ has a molecular mass of 39 amu and the products of its recombination $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) 78 \mathrm{amu}$. Contamination of the background signal at $\mathrm{m} / \mathrm{z}=78$ and 79 most likely arises from products of 1-propynyl recombination $\left(\mathrm{C}_{6} \mathrm{H}_{6}-78 \mathrm{amu}\right)$ with the contribution of ${ }^{13} \mathrm{C}$-compounds $\left({ }^{13} \mathrm{CC}_{5} \mathrm{H}_{6}-79 \mathrm{amu}\right) . \mathrm{C}_{6} \mathrm{H}_{6}$ isomers, according to the NIST database, show peaks at $78-80 \mathrm{~m} / \mathrm{z}$ indicating the presence of up to two ${ }^{13} \mathrm{C}$ atoms. Recombination of 1-propynyl most likely occurs during supersonic expansion in the "expansion region", on the stainless walls of the pulse valve (catalyzed by $\mathrm{Fe}_{2} \mathrm{O}_{3}$) or through a precursor decay $\left(\mathrm{CH}_{3} \mathrm{CCI}\right)$ during storage. In addition, mass 80 amu can have a contribution from ionized helium clusters He_{20}, common in molecular beams of $\mathrm{He}^{1,2}$, which was used as a carrier gas for the $\mathrm{CH}_{3} \mathrm{CCI}$ precursor. The ionization energy used in the experiment (80 eV) is sufficient to ionize He clusters (He ionization potential is 24.6 eV).

3. RRKM calculations results

Table S1. Statistical branching ratios (\%) for the reaction of 2-methylpropene + propynyl with il and $\boldsymbol{i 4}$ as initial intermediates at different collision energies ($E_{C}, \mathrm{~kJ} \mathrm{~mol}^{-1}$)

	i1		i4	
E_{C}	0	38	0	38
p1+H	65.2	59.2	66.4	63.1
p2+H	8.7	12.2	8.8	13.0
p3+CH3	22.4	25.3	21.0	20.4
cis-p4+CH3	2.2	1.9	2.2	2.0
trans-p4+CH3	1.4	1.3	1.5	1.4
$\mathrm{p}^{7}+\mathrm{C}_{3} \mathrm{H}_{6}$	0.1	0.1	0.1	0.1
p8+CH3	0.0	0.0	0.0	0.0
p9+H	0.0	0.0	0.0	0.0
p10+H	0.0	0.0	0.0	0.0

$\mathrm{p} 11+\mathrm{CH}_{3}$	0.0	0.0	0.0	0.0
$\mathrm{p} 12+\mathrm{CH}_{3}$	0.0	0.0	0.0	0.0
p13+H	0.0	0.0	0.0	0.0
p14+H	0.0	0.0	0.0	0.0
p15+H	0.0	0.0	0.0	0.0
p16+H	0.0	0.0	0.0	0.0
p17+H	0.0	0.0	0.0	0.0
p18+CH3	0.0	0.0	0.0	0.0
p19+H	0.0	0.0	0.0	0.0
p20+H	0.0	0.0	0.0	0.0
$\mathrm{p}^{21+\mathrm{CH}_{3}}$	0.0	0.0	0.0	0.0
p22+H	0.0	0.0	0.0	0.0
p23+H	0.0	0.0	0.0	0.0
p24+H	0.0	0.0	0.0	0.0
p25+H	0.0	0.0	0.0	0.0

Table S2. RRKM calculated rate constants $\left(k(E), \mathrm{s}^{-1}\right)$ of the reaction of 2-methylpropene + propynyl as functions of the internal energy $\left(E, \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ of the intermediate states for unimolecular reaction steps at different collision energies $\left(E_{C}, \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

\boldsymbol{E}_{C}	0		37		E_{C}	0		37	
$\begin{aligned} & \text { Reaction } \\ & \text { step } \end{aligned}$	$k(E)$	E	$k(E)$	E	Reaction step	$k(E)$	E	$k(E)$	E
i1-i2	$3.35 \mathrm{E}+09$	225	$6.71 \mathrm{E}+09$	263	i10-il1	$1.11 \mathrm{E}+06$	399	$4.22 \mathrm{E}+06$	437
i2-i1	$1.95 \mathrm{E}+12$	186	$2.84 \mathrm{E}+12$	224	i11-i10	$5.22 \mathrm{E}+07$	321	$1.39 \mathrm{E}+08$	359
i1-p3	$1.83 \mathrm{E}+07$	225	$1.30 \mathrm{E}+08$	263	i11-i17	$1.95 \mathrm{E}+10$	321	$2.66 \mathrm{E}+10$	359
i4-i6	$1.02 \mathrm{E}+06$	238	$7.59 \mathrm{E}+06$	276	i17-i11	$9.32 \mathrm{E}+11$	302	$1.18 \mathrm{E}+12$	340
i6-i4	$7.47 \mathrm{E}+04$	272	$7.15 \mathrm{E}+05$	310	i14-p16	$9.04 \mathrm{E}+07$	386	$3.11 \mathrm{E}+08$	424
i4-p1	$1.80 \mathrm{E}+07$	238	$1.40 \mathrm{E}+08$	276	i14-i15	$3.28 \mathrm{E}+06$	386	$1.17 \mathrm{E}+07$	424
i4-p2	$2.40 \mathrm{E}+06$	238	$2.89 \mathrm{E}+07$	276	i15-i14	$7.03 \mathrm{E}+07$	330	$1.95 \mathrm{E}+08$	368
i4-i3	$1.09 \mathrm{E}+09$	238	$2.63 \mathrm{E}+09$	276	i15-p18	$1.31 \mathrm{E}+09$	330	$3.54 \mathrm{E}+09$	368
i3-i4	$3.03 \mathrm{E}+11$	187	$4.54 \mathrm{E}+11$	225	i15-p17	$1.23 \mathrm{E}+08$	330	$3.83 \mathrm{E}+08$	368
i6-p1	$3.06 \mathrm{E}+05$	272	$2.96 \mathrm{E}+06$	310	i10-p16	$1.06 \mathrm{E}+08$	399	$3.73 \mathrm{E}+08$	437
$\begin{gathered} \text { i6 - trans- } \\ p 4 \\ \hline \end{gathered}$	$1.10 \mathrm{E}+07$	272	$7.47 \mathrm{E}+07$	310	i15-i16	$1.09 \mathrm{E}+07$	330	$3.65 \mathrm{E}+07$	368
i6 - cis-p4	$1.68 \mathrm{E}+07$	272	$1.12 \mathrm{E}+08$	310	i16-i15	$1.33 \mathrm{E}+06$	338	$4.60 \mathrm{E}+06$	376
i6-p9	$1.76 \mathrm{E}+01$	272	$1.59 \mathrm{E}+03$	310	i16-p17	$1.61 \mathrm{E}+08$	338	$4.86 \mathrm{E}+08$	376
$i 5-p 2$	$5.11 \mathrm{E}+04$	223	$7.75 \mathrm{E}+05$	261	i16-p19	$4.19 \mathrm{E}+08$	338	$1.09 \mathrm{E}+09$	376
i5-p8	$5.61 \mathrm{E}+06$	223	$5.39 \mathrm{E}+07$	261	i16-p20	$4.48 \mathrm{E}+07$	338	$1.59 \mathrm{E}+08$	376
i5-p7	$2.59 \mathrm{E}+08$	223	$1.08 \mathrm{E}+09$	261	i17-i18	$1.85 \mathrm{E}+11$	302	$2.51 \mathrm{E}+11$	340
i5-i9	$1.51 \mathrm{E}+08$	223	$3.55 \mathrm{E}+08$	261	i18-i17	$4.93 \mathrm{E}+09$	340	$8.10 \mathrm{E}+09$	378
i9-i5	$2.29 \mathrm{E}+08$	278	$8.88 \mathrm{E}+08$	316	i18-p24	$1.54 \mathrm{E}+08$	340	$4.53 \mathrm{E}+08$	378
i9-i10	$3.42 \mathrm{E}+04$	278	$4.22 \mathrm{E}+05$	316	i18-p25	$4.77 \mathrm{E}+08$	340	$1.38 \mathrm{E}+09$	378
i10-i9	$1.55 \mathrm{E}+00$	399	$3.37 \mathrm{E}+01$	437	i19-p25	$4.44 \mathrm{E}+08$	339	$1.29 \mathrm{E}+09$	377
i9-i14	$1.53 \mathrm{E}+04$	278	$1.66 \mathrm{E}+05$	316	i19-p21	$2.59 \mathrm{E}+09$	339	$6.36 \mathrm{E}+09$	377
i14-i9	$3.20 \mathrm{E}+00$	386	$5.86 \mathrm{E}+01$	424	i19-p23	$2.13 \mathrm{E}+08$	339	$5.91 \mathrm{E}+08$	377
i2-i3	$1.51 \mathrm{E}+12$	186	$1.93 \mathrm{E}+12$	224	i20-p24	$2.69 \mathrm{E}+07$	400	$9.43 \mathrm{E}+07$	438
i3-i2	$2.29 \mathrm{E}+11$	187	$2.92 \mathrm{E}+11$	225	i20-p22	$6.00 \mathrm{E}+06$	400	$2.09 \mathrm{E}+07$	438

i3-p10	$2.04 \mathrm{E}+00$	187	$1.12 \mathrm{E}+03$	225	i20-p21	$5.91 \mathrm{E}+08$	400	$1.64 \mathrm{E}+09$	438
i2-p10	$1.20 \mathrm{E}+01$	186	$6.96 \mathrm{E}+03$	224	i13-i11	$3.50 \mathrm{E}+06$	337	$1.25 \mathrm{E}+07$	375
i4-i5	$1.93 \mathrm{E}+04$	238	$3.06 \mathrm{E}+05$	276	i11-i13	$2.32 \mathrm{E}+06$	321	$7.63 \mathrm{E}+06$	359
i5-i4	$1.87 \mathrm{E}+04$	223	$2.56 \mathrm{E}+05$	261	i11-p16	$4.48 \mathrm{E}+07$	321	$1.31 \mathrm{E}+08$	359
i10-i12	$3.34 \mathrm{E}+06$	399	$1.06 \mathrm{E}+07$	437	i12-p14	$4.20 \mathrm{E}+08$	358	$1.13 \mathrm{E}+09$	396
i12-i10	$1.87 \mathrm{E}+07$	358	$4.98 \mathrm{E}+07$	396	i12-p17	$3.92 \mathrm{E}+08$	358	$1.25 \mathrm{E}+09$	396
i10-p11	$4.39 \mathrm{E}+08$	399	$1.17 \mathrm{E}+09$	437	i12-p13	$8.14 \mathrm{E}+08$	358	$2.13 \mathrm{E}+09$	396
i10-p14	$3.71 \mathrm{E}+07$	399	$1.16 \mathrm{E}+08$	437	i15-p16	$3.80 \mathrm{E}+08$	330	$1.11 \mathrm{E}+09$	368
i10-p15	$9.65 \mathrm{E}+07$	399	$3.17 \mathrm{E}+08$	437	i18-i19	$1.81 \mathrm{E}+07$	340	$6.32 \mathrm{E}+07$	378
i10-i13	$9.95 \mathrm{E}+05$	399	$3.50 \mathrm{E}+06$	437	i19-i18	$2.43 \mathrm{E}+07$	339	$8.46 \mathrm{E}+07$	377
i13-i10	$7.09 \mathrm{E}+07$	337	$1.90 \mathrm{E}+08$	375	i18-i20	$1.54 \mathrm{E}+08$	340	$3.86 \mathrm{E}+08$	378
i13-p15	$1.67 \mathrm{E}+08$	337	$4.80 \mathrm{E}+08$	375	i20-i18	$5.15 \mathrm{E}+06$	400	$1.67 \mathrm{E}+07$	438
i13-p12	$3.84 \mathrm{E}+09$	337	$9.61 \mathrm{E}+09$	375					

Table S3. Statistical branching ratios (\%) for the reaction of trans-but-2-ene + propynyl with $i \boldsymbol{i 7}$ as an initial intermediate at different collision energies $\left(E_{C}, \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

	$\boldsymbol{i 7}$	
E_{C}	$\mathbf{0}$	$\mathbf{3 8}$
$\boldsymbol{t r a n s} \boldsymbol{p} \mathbf{+}+\boldsymbol{C H}_{3}$	97.4	95.8
$\boldsymbol{c i s} \boldsymbol{p} \mathbf{5}+\boldsymbol{H}$	2.3	3.5
$\boldsymbol{p 6}+\boldsymbol{H}$	0.3	0.7

Table S4. Statistical branching ratios (\%) for the reaction of cis-but-2-ene + propynyl with i8 as an initial intermediate at different collision energies $\left(E_{C}, \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

	$\boldsymbol{i 8}$	
E_{C}	$\mathbf{0}$	$\mathbf{3 8}$
$\boldsymbol{c i s} \boldsymbol{p} \mathbf{4}+\boldsymbol{C H}_{3}$	96.8	94.4
trans- $\mathbf{5}+\boldsymbol{H}$	3.0	5.1
$\boldsymbol{p 6} \boldsymbol{+}+\boldsymbol{H}$	0.2	0.5

4. Full potential energy surface for the bimolecular reaction of the 1-propynyl radical $\left(\mathbf{C H}_{3} \mathbf{C C} ; \mathbf{X}^{\mathbf{2}} \mathbf{A}_{1}\right)$ with 2-methylpropene $\left(\left(\mathbf{C H}_{3}\right)_{2} \mathbf{C C H}_{2}\right.$; $\mathbf{X}^{1} \mathrm{~A}^{\prime}$) calculated at the CCSD(T)-F12/cc-pVTZ-F12//由B97X-D/6-311G(d,p) level of theory

Figure S1. Potential energy surface for the bimolecular reaction of the 1-propynyl radical $\left(\mathrm{CH}_{3} \mathrm{CC} ; \mathrm{X}^{2} \mathrm{~A}_{1}\right)$ with 2-methylpropene $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2} ; \mathrm{X}^{1} \mathrm{~A}^{\prime}\right)$ calculated at the $\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 / \mathrm{cc}-\mathrm{pVTZ}-\mathrm{F} 12 / / \omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory. Relative energies are given in $\mathrm{kJ} \mathrm{mol}^{-1}$. Part I.

Figure S2. Potential energy surface for the bimolecular reaction of the 1-propynyl radical $\left(\mathrm{CH}_{3} \mathrm{CC} ; \mathrm{X}^{2} \mathrm{~A}_{1}\right)$ with 2-methylpropene $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2} ; \mathrm{X}^{1} \mathrm{~A}^{\prime}\right)$ calculated at the $\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 / \mathrm{cc}-\mathrm{pVTZ}-\mathrm{F} 12 / / \omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory. Relative energies are given in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$. Part II.
-methyl-4-methylenecyclopent-1-ene 2,5-dimethylcyclopenta-1,3-diene

3-methyl-5-methylenecyclopent-1-ene
1,4-dimethylcyclopenta-1,3-diene
16 $+c$

1,3-dimethylcyclopenta-1,3-diene

5-methylcyclopenta-1,3-diene

Figure S3. Potential energy surface for the bimolecular reaction of the 1-propynyl radical $\left(\mathrm{CH}_{3} \mathrm{CC} ; \mathrm{X}^{2} \mathrm{~A}_{1}\right)$ with 2-methylpropene $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2} ; \mathrm{X}^{1} \mathrm{~A}^{\prime}\right)$ calculated at the $\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 / \mathrm{cc}-\mathrm{pVTZ}-\mathrm{F} 12 / / \omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory. Relative energies are given in $\mathrm{kJ} \mathrm{mol}^{-1}$. Part III.

Figure S4. Potential energy surface for the bimolecular reaction of the 1-propynyl radical $\left(\mathrm{CH}_{3} \mathrm{CC} ; \mathrm{X}^{2} \mathrm{~A}_{1}\right)$ with 2-methylpropene $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2} ; \mathrm{X}^{1} \mathrm{~A}^{\prime}\right)$ calculated at the $\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 / \mathrm{cc}-\mathrm{pVTZ}-\mathrm{F} 12 / / \omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory. Relative energies are given in $\mathrm{kJ} \mathrm{mol}^{-1}$. Part IV.

Figure S5. Potential energy surface for the bimolecular reaction of the 1-propynyl radical $\left(\mathrm{CH}_{3} \mathrm{CC} ; \mathrm{X}^{2} \mathrm{~A}_{1}\right)$ with 2-methylpropene $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2} ; \mathrm{X}^{1} \mathrm{~A}^{\prime}\right)$ calculated at the $\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 / \mathrm{cc}-\mathrm{pVTZ}-\mathrm{F} 12 / / \omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory. Relative energies are given in $\mathrm{kJ} \mathrm{mol}^{-1}$. Part V.

5. References

1 H. Buchenau, E. L. Knuth, J. Northby, J. P. Toennies and C. Winkler, Mass spectra and time-of-flight distributions of helium cluster beams, The Journal of Chemical Physics, 1990, 92, 6875-6889.
2L. Lundberg, P. Bartl, C. Leidlmair, P. Scheier and M. Gatchell, Protonated and Cationic Helium Clusters, Molecules, 2020, 25, 1066.

