Electronic Supporting Information

Elucidating the Chemical Dynamics of the Elementary Reactions of the 1-Propynyl Radical (CH₃CC; X₂A¹) with 2-Methylpropene ((CH₃)₂CCH₂; X¹A₁)

Iakov A. Medvedkov,^a Anatoliy A. Nikolayev,^b Zhenghai Yang,^a Shane J. Goettl,^a Alexander M. Mebel,^{c*} Ralf I. Kaiser^{a*}

^a Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA

^b Samara National Research University, Samara 443086, Russia

^c Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA

Corresponding to: ralfk@hawaii.edu; mebela@fiu.edu

Contents

1.	Discussion of the full potential energy surface (PES) of the reaction of 1-propynyl with 2-methylpropene
2.	Discussion of the probable sources of background signal at m/z 78, 79 and 804
3.	RRKM calculations results4
4.	Full potential energy surface for the bimolecular reaction of the 1-propynyl radical (CH ₃ CC; X^2A_1) with 2-methylpropene ((CH ₃) ₂ CCH ₂ ; X^1A') calculated at the CCSD(T)-F12/cc-pVTZ-F12// ω B97X-D/6-311G(d,p) level of theory
5.	References

1. Discussion of the full potential energy surface (PES) of the reaction of 1-propynyl with 2-methylpropene.

Reaction starts with an attack of 1-propynyl radical without any entrance barrier to one of the two chemically inequivalent carbon atoms C1 or C2 in 2-methylpropene via addition with its radical center to the C1=C2 double bond. This leads to doublet radical intermediates i1 and/or i4. Both intermediates can be interconverted through the three-carbon ring closure steps via i2 and i3 intermediates. i4 can isomerize via two distinct [1,2-H] shifts: (1) from the CH₃ group of the C₄H₈ moiety to i5 or (2) from the CH₂ group at the C1-position to form i6. The formation of p1–p3 products is discussed in the main text of the manuscript (*4. Discussion*), here we will focus on the pathways to less important, according to the RRKM calculations (Table S1), products cis/trans-p4 and p7 – p25 (Fig. S1–S5).

1.1 Acyclic products cis/trans-p4 and p7 – p10 (Fig. S1 and S2)

Products **p7** and **p8** (Fig. S1-S2) are formed from **i5** via propene and methyl loss channels, respectively. Intermediate **i6** leads to *cis*- and *trans*- isomers of hex-2-en-4-yne (**cis/trans-p4**) via methyl elimination and to 5-methylhexa-1,2,3-triene (**p9**) through the hydrogen elimination exit channels. The product **p10** only can be formed via an H-loss form **i2** or **i3**.

1.2 Cyclic products p11 - p20 containing a five-membered ring (Fig. S3 – S4)

The 'bottle-neck' step on the way to cyclic products is a five-membered ring closure in **i5** with an energy barrier of 76 kJ mol⁻¹ that leads to **i9**. Further, **i9** can isomerize via two distinct [1,2-H] shifts: (1) from the CH₂ group of the 2-methylpropene moiety to form **i10** or (2) from the methyl group of the 1-propynyl moiety to form **i14**. Starting from **i10** and **i14**, ten distinct products **p11** – **p20** containing five-membered rings can be formed via the pathways summarized below:

```
\begin{array}{l} i10 \rightarrow p11 + CH_3; \\ i10 \rightarrow p14/p15/p16 + H; \\ i10 \rightarrow i13 \rightarrow p12 + CH_3; \\ i10 \rightarrow i13 \rightarrow p13/p15 + H; \\ i10 \rightarrow i11 \rightarrow i13 \rightarrow p12 + CH_3; \\ i10 \rightarrow i11 \rightarrow i13 \rightarrow p13/p15 + H; \\ i10 \rightarrow i11 \rightarrow p16 + H; \\ i10 \rightarrow i12 \rightarrow p13/p14/p17 + H; \\ i14 \rightarrow p16 + H; \\ i14 \rightarrow i15 \rightarrow p16/p17 + H; \\ i14 \rightarrow i15 \rightarrow p18 + CH_3; \\ i14 \rightarrow i15 \rightarrow i16 \rightarrow p17/p19/p20 + H. \end{array}
```

1.3 Cyclic products p21 – p25 containing a six-membered ring (Fig. S5)

Intermediate i10 can undergo a hydrogen shift from the methyl group of the 1-propynyl moiety to the five-membered ring (i11) followed by the ring expansion (i11 \rightarrow i17 \rightarrow i18) that incorporates all the 1-propynyl carbon atoms into the newly formed six-membered ring. Isomers p21 – p25 can be formed from i18 via the pathways summarized below:

$$\begin{split} &i18 \rightarrow p24/p25 + H; \\ &i18 \rightarrow i19 \rightarrow p21 + CH_3; \\ &i18 \rightarrow i19 \rightarrow p23/p25 + H; \\ &i18 \rightarrow i20 \rightarrow p21 + CH_3; \\ &i18 \rightarrow i20 \rightarrow p22/p24 + H. \end{split}$$

2. Discussion of the probable sources of background signal at m/z 78, 79 and 80

Since the highly reactive 1-propynyl radical (CH₃CC) has a molecular mass of 39 amu and the products of its recombination (C₆H₆) 78 amu. Contamination of the background signal at m/z = 78 and 79 most likely arises from products of 1-propynyl recombination (C₆H₆ – 78 amu) with the contribution of ¹³C-compounds (¹³CC₅H₆ – 79 amu). C₆H₆ isomers, according to the NIST database, show peaks at 78 – 80 m/z indicating the presence of up to two ¹³C atoms. Recombination of 1-propynyl most likely occurs during supersonic expansion in the "expansion region", on the stainless walls of the pulse valve (catalyzed by Fe₂O₃) or through a precursor decay (CH₃CCI) during storage. In addition, mass 80 amu can have a contribution from ionized helium clusters He₂₀, common in molecular beams of He^{1,2}, which was used as a carrier gas for the CH₃CCI precursor. The ionization energy used in the experiment (80 eV) is sufficient to ionize He clusters (He ionization potential is 24.6 eV).

3. RRKM calculations results

	i	1		i4
E _C	0	38	0	38
<i>p1+H</i>	65.2	59.2	66.4	63.1
<i>p2+H</i>	8.7	12.2	8.8	13.0
<i>p3+CH</i> ₃	22.4	25.3	21.0	20.4
cis-p4+CH ₃	2.2	1.9	2.2	2.0
trans-p4+CH ₃	1.4	1.3	1.5	1.4
<i>p7</i> + <i>C</i> ₃ <i>H</i> ₆	0.1	0.1	0.1	0.1
<i>p8+CH</i> ₃	0.0	0.0	0.0	0.0
р9+H	0.0	0.0	0.0	0.0
<i>p10+H</i>	0.0	0.0	0.0	0.0

Table S1. Statistical branching ratios (%) for the reaction of 2-methylpropene + propynyl with *i1* and *i4* as initial intermediates at different collision energies (E_C , kJ mol⁻¹)

<i>p11+CH</i> ₃	0.0	0.0	0.0	0.0
<i>p12+CH</i> ₃	0.0	0.0	0.0	0.0
<i>p13+H</i>	0.0	0.0	0.0	0.0
<i>p14+H</i>	0.0	0.0	0.0	0.0
<i>p15+H</i>	0.0	0.0	0.0	0.0
p16+H	0.0	0.0	0.0	0.0
<i>p17</i> + <i>H</i>	0.0	0.0	0.0	0.0
<i>p18+CH</i> ₃	0.0	0.0	0.0	0.0
<i>p19+H</i>	0.0	0.0	0.0	0.0
<i>p20+H</i>	0.0	0.0	0.0	0.0
<i>p21+CH</i> ₃	0.0	0.0	0.0	0.0
р22+Н	0.0	0.0	0.0	0.0
<i>p23+H</i>	0.0	0.0	0.0	0.0
<i>p24+H</i>	0.0	0.0	0.0	0.0
p25+H	0.0	0.0	0.0	0.0

Table S2. RRKM calculated rate constants (k(E), s⁻¹) of the reaction of 2-methylpropene + propynyl as functions of the internal energy (E, kJ mol⁻¹) of the intermediate states for unimolecular reaction steps at different collision energies (E_C , kJ mol⁻¹)

E _C	0		37		E _C	0		37	
Reaction step	k(E)	Ε	k(E)	Ε	Reaction step	k(E)	Ε	k(E)	Ε
i1 – i2	3.35E+09	225	6.71E+09	263	i10 - i11	1.11E+06	399	4.22E+06	437
i2 – i1	1.95E+12	186	2.84E+12	224	i11 - i10	5.22E+07	321	1.39E+08	359
i1 – p3	1.83E+07	225	1.30E+08	263	i11 – i17	1.95E+10	321	2.66E+10	359
i4 — i6	1.02E+06	238	7.59E+06	276	i17–i11	9.32E+11	302	1.18E+12	340
i6 - i4	7.47E+04	272	7.15E+05	310	i14 – p16	9.04E+07	386	3.11E+08	424
i4 – p1	1.80E+07	238	1.40E+08	276	i14 – i15	3.28E+06	386	1.17E+07	424
i4 – p2	2.40E+06	238	2.89E+07	276	i15 – i14	7.03E+07	330	1.95E+08	368
i4 – i3	1.09E+09	238	2.63E+09	276	i15 – p18	1.31E+09	330	3.54E+09	368
i3 – i4	3.03E+11	187	4.54E+11	225	i15 – p17	1.23E+08	330	3.83E+08	368
i6 – p1	3.06E+05	272	2.96E+06	310	i10-p16	1.06E+08	399	3.73E+08	437
i6 – trans- p4	1.10E+07	272	7.47E+07	310	i15 – i16	1.09E+07	330	3.65E+07	368
i6 – cis-p4	1.68E+07	272	1.12E+08	310	i16 – i15	1.33E+06	338	4.60E+06	376
i6 – p9	1.76E+01	272	1.59E+03	310	i16 – p17	1.61E+08	338	4.86E+08	376
i5 – p2	5.11E+04	223	7.75E+05	261	i16 - p19	4.19E+08	338	1.09E+09	376
i5 – p8	5.61E+06	223	5.39E+07	261	i16 – p20	4.48E+07	338	1.59E+08	376
i5 – p7	2.59E+08	223	1.08E+09	261	i17 – i18	1.85E+11	302	2.51E+11	340
i5 — i9	1.51E+08	223	3.55E+08	261	i18 – i17	4.93E+09	340	8.10E+09	378
i9 — i5	2.29E+08	278	8.88E+08	316	i18 – p24	1.54E+08	340	4.53E+08	378
i9 — i10	3.42E+04	278	4.22E+05	316	i18 – p25	4.77E+08	340	1.38E+09	378
i10 - i9	1.55E+00	399	3.37E+01	437	i19 – p25	4.44E+08	339	1.29E+09	377
i9 — i14	1.53E+04	278	1.66E+05	316	i19 – p21	2.59E+09	339	6.36E+09	377
i14 — i9	3.20E+00	386	5.86E+01	424	i19 – p23	2.13E+08	339	5.91E+08	377
i2 – i3	1.51E+12	186	1.93E+12	224	i20 - p24	2.69E+07	400	9.43E+07	438
i3 – i2	2.29E+11	187	2.92E+11	225	i20 - p22	6.00E+06	400	2.09E+07	438

i3 - p10	2.04E+00	187	1.12E+03	225	i20 – p21	5.91E+08	400	1.64E+09	438
i2 - p10	1.20E+01	186	6.96E+03	224	i13 – i11	3.50E+06	337	1.25E+07	375
i4 – i5	1.93E+04	238	3.06E+05	276	i11 – i13	2.32E+06	321	7.63E+06	359
i5 — i4	1.87E+04	223	2.56E+05	261	i11 – p16	4.48E+07	321	1.31E+08	359
i10 - i12	3.34E+06	399	1.06E+07	437	i12 – p14	4.20E+08	358	1.13E+09	396
i12 - i10	1.87E+07	358	4.98E+07	396	i12 – p17	3.92E+08	358	1.25E+09	396
i10-p11	4.39E+08	399	1.17E+09	437	i12 – p13	8.14E+08	358	2.13E+09	396
i10-p14	3.71E+07	399	1.16E+08	437	i15 – p16	3.80E+08	330	1.11E+09	368
i10-p15	9.65E+07	399	3.17E+08	437	i18 – i19	1.81E+07	340	6.32E+07	378
i10 - i13	9.95E+05	399	3.50E+06	437	i19 – i18	2.43E+07	339	8.46E+07	377
i13 - i10	7.09E+07	337	1.90E+08	375	i18 - i20	1.54E+08	340	3.86E+08	378
i13 – p15	1.67E+08	337	4.80E+08	375	i20 - i18	5.15E+06	400	1.67E+07	438
i13 - p12	3.84E+09	337	9.61E+09	375					

Table S3. Statistical branching ratios (%) for the reaction of *trans*-but-2-ene + propynyl with *i*7 as an initial intermediate at different collision energies (E_C , kJ mol⁻¹)

	<i>i7</i>				
E_C	0	38			
trans-p4+CH ₃	97.4	95.8			
cis-p5+H	2.3	3.5			
<i>p6+H</i>	0.3	0.7			

Table S4. Statistical branching ratios (%) for the reaction of *cis*-but-2-ene + propynyl with *i8* as an initial intermediate at different collision energies (E_C , kJ mol⁻¹)

	i8				
E_C	0	38			
cis-p4+CH ₃	96.8	94.4			
trans-p5+H	3.0	5.1			
<i>p6'+H</i>	0.2	0.5			

4. Full potential energy surface for the bimolecular reaction of the 1-propynyl radical (CH₃CC; X²A₁) with 2-methylpropene ((CH₃)₂CCH₂; X¹A') calculated at the CCSD(T)-F12/cc-pVTZ-F12//ωB97X-D/6-311G(d,p) level of theory

Figure S1. Potential energy surface for the bimolecular reaction of the 1-propynyl radical (CH₃CC; X^2A_1) with 2-methylpropene ((CH₃)₂CCH₂; X^1A') calculated at the CCSD(T)-F12/cc-pVTZ-F12// ω B97X-D/6-311G(d,p) level of theory. Relative energies are given in kJ mol⁻¹. Part I.

Figure S2. Potential energy surface for the bimolecular reaction of the 1-propynyl radical (CH₃CC; X^2A_1) with 2-methylpropene ((CH₃)₂CCH₂; X^1A') calculated at the CCSD(T)-F12/cc-pVTZ-F12// ω B97X-D/6-311G(d,p) level of theory. Relative energies are given in kJ mol⁻¹. Part II.

Figure S3. Potential energy surface for the bimolecular reaction of the 1-propynyl radical (CH₃CC; X^2A_1) with 2-methylpropene ((CH₃)₂CCH₂; X^1A') calculated at the CCSD(T)-F12/cc-pVTZ-F12// ω B97X-D/6-311G(d,p) level of theory. Relative energies are given in kJ mol⁻¹. Part III.

Figure S4. Potential energy surface for the bimolecular reaction of the 1-propynyl radical (CH₃CC; X^2A_1) with 2-methylpropene ((CH₃)₂CCH₂; X^1A') calculated at the CCSD(T)-F12/cc-pVTZ-F12// ω B97X-D/6-311G(d,p) level of theory. Relative energies are given in kJ mol⁻¹. Part IV.

Figure S5. Potential energy surface for the bimolecular reaction of the 1-propynyl radical (CH₃CC; X^2A_1) with 2-methylpropene ((CH₃)₂CCH₂; X^1A') calculated at the CCSD(T)-F12/cc-pVTZ-F12// ω B97X-D/6-311G(d,p) level of theory. Relative energies are given in kJ mol⁻¹. Part V.

5. References

- 1 H. Buchenau, E. L. Knuth, J. Northby, J. P. Toennies and C. Winkler, Mass spectra and time-of-flight distributions of helium cluster beams, *The Journal of Chemical Physics*, 1990, **92**, 6875–6889.
- 2L. Lundberg, P. Bartl, C. Leidlmair, P. Scheier and M. Gatchell, Protonated and Cationic Helium Clusters, *Molecules*, 2020, **25**, 1066.