Supporting Information for

# **Gas-Phase Synthesis of Coronene through Stepwise Directed Ring Annulation**

Shane J. Goettl<sup>1</sup>, Lotefa B. Tuli<sup>2</sup>, Andrew M. Turner<sup>1</sup>, Yahaira Reyes<sup>2</sup>, A. Hasan Howlader<sup>2†</sup>, Stanislaw F. Wnuk<sup>2</sup>, Patrick Hemberger<sup>\*3</sup>, Alexander M. Mebel<sup>\*2</sup>, Ralf I. Kaiser<sup>\*1</sup>

## Affiliations

- <sup>1</sup> Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
- <sup>2</sup> Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- <sup>3</sup> Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
- <sup>†</sup> Present address: Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- \* Correspondance: ralfk@hawaii.edu, mebela@fiu.edu, patrick.hemberger@psi.ch

**Table of Contents** 

- 1. Precursor Synthesis and Characterization
- 2. Mass Spectra Analysis
- 3. Test Reaction
- 4. Table S1 and Figures S1–S13
- **5.** Supporting References

## 1. Precursor Synthesis and Characterization

## **1.1. General Information:**

<sup>1</sup>H NMR spectra at 400 MHz and <sup>13</sup>C NMR at 100.6 MHz were recorded on a Bruker 400 MHz instrument with solutions of CDCl<sub>3</sub>. All chemical shift values are reported in parts per million (ppm) and referenced to the residual solvent peaks of CDCl<sub>3</sub> (7.26 ppm) for <sup>1</sup>H NMR and the CDCl<sub>3</sub> (77.2 ppm) peaks for <sup>13</sup>C NMR spectra, with coupling constant (*J*) values reported in Hz. TLC was performed on Merck Kieselgel 60-F<sub>254</sub>, and products were detected with 254 nm light. Merck Kieselgel 60 (230-400 mesh) was used for column chromatography. For ultrasonic vibration a Branson ultrasonic cleaner, Model 5200, was used. All reagents and solvents were purchased from commercial suppliers and dried using standard procedures. Anhydrous THF and triphenylene **S1** were purchased from Fisher Scientific and benzo[*ghi*]perylene **S7** was purchased from Ambeed Inc. and used without further purification.

## 1.2. Synthesis of 1-bromotriphenylene (S5):

1-Bromotriphenylene **S5** was synthesized by diazotization-bromination of 1-aminotriphenylene, which was prepared from commercially available triphenylene via nitration followed by reduction. Thus, nitration of triphenylene **S1** with  $HNO_3/(AcO)_2O$  gave a mixture of 2-nitrotriphenylene **S2** (20%) and 1-nitrotriphenylene **S3** (30%),<sup>1</sup> which were separated on silica gel column (Scheme 1). Reduction of **S3** with Fe powder/NH<sub>4</sub>Cl produced 1-aminotriphenylene **S4**. Subsequent, diazotization-bromination of **S4** with NaNO<sub>2</sub>/CuBr/HBr provided mixture of 1-bromotriphenylene **S5**/1,2-dibromotriphenylene **S6** (77:23).



Scheme 1. Synthesis of 1-bromotriphenylene S5.

**2-Nitrotriphenylene (S2)** and **1-Nitrotriphenylene (S3).** The triphenylene S1 (10.0 g, 43.8 mmol) was dissolved in Ac<sub>2</sub>O (60 mL) in a flame-dried flask. HNO<sub>3</sub> (2.80 mL, 70% w/w) was added into the mixture dropwise for 10 minutes. The reaction mixture was stirred at 60 °C for 1 h. The reaction mixture was diluted with EtOAc (100 mL) and was extracted with H<sub>2</sub>O (100 x 5). The organic layer was washed with saturated NaHCO<sub>3</sub> (50 mL x 5), brine (100 mL) and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Volatiles were evaporated and the residue was column chromatographed (5  $\rightarrow$  20% EtOAc/hexane) to give S3 (3.6 g, 30%) and S2 (2.4 g, 20%) as light-yellow powder.<sup>1</sup> More polar compound S3 had: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.51 (t, *J* = 7.8 Hz, 1H), 7.59–7.71 (m, 4H), 7.79 (d, *J* = 7.6 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 8.50 (d, *J* = 7.4 Hz, 1H), 8.57 (d, *J* = 7.6 Hz, 2H), 8.70 (d, *J* = 8.2 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  122.44, 123.33, 123.50, 123.62, 127.78, 125.37, 126.33, 126.45, 126.54, 127.16, 127.97, 128.20, 128.66, 128.78, 130.40, 131.11, 132.50, 149.90. Less polar S2 had: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.65–7.77 (m, 4H), 8.31 (dd, *J* = 8.8, 2.4 Hz, 1H), 8.51 – 8.62 (m, 5H), 9.35 (d, *J* = 2.4 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  119.24, 120.99, 123.54, 123.65, 124.35, 124.57, 127.88, 128.02, 128.69, 128.75, 129.28, 130.10, 130.24, 131.11, 134.44, 146.49.

1-Aminotriphenylene (S4). Iron powder (4.38 g, 78.5 mmol) was added to the solution of NH<sub>4</sub>Cl (4.2 g, 78.5 mmol) in H<sub>2</sub>O/EtOH (60 mL, 1:1) in a flask equipped with a stir bar. The mixture was stirred at 60 °C for 30 min to activate the iron powder. Then, 1-nitrotriphenylene S3 (742 mg, 3.0 mmol) was added and the temperature of reaction mixture was raised to 80 °C and stirring was continued for another 30 min. The mixture was cooled with ice bath, basified with dilute aqueous NaOH to pH ~12 and was filtered to remove solid residue. The filtrate was concentrated under reduced pressure and extracted with EtOAc. The organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and evaporated. The residue was purified by column chromatography (20  $\rightarrow$  30% EtOAc/hexane) to give S4 (2.45 g, 83%) as a yellow solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4.37 (s, 2H), 6.98 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 8.0 Hz, 1H), 7.55–7.66 (m, 4H), 8.11 (d, *J* = 8.0 Hz, 1H), 8.55–8.67 (m, 3H), 9.22 (d, *J* = 7.9 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  114.22, 115.99, 118.85, 123.13, 123.70, 123.99, 126.09, 126.32, 126.36, 127.31, 127.38, 130.12, 130.27, 130.42, 130.49, 132.22, 145.20.

**1-Bromotriphenylene** (S**5**) and **1,2-dibromotriphenylene** (S**6**). The 1-Aminotriphenylene S**4** (200 mg, 0.82 mmol) was dissolved in mixture of MeCN/H<sub>2</sub>O (16 mL, 1:1). Then, pre-cooled HBr (48%, 5 mL) was added and stirred at 0 °C. Aqueous solution of NaNO<sub>2</sub> (85 mg, 1.2 mmol; 1.0 mL) was added into the mixture dropwise for 2 minutes. The reaction mixture was stirred at 0 °C

for 20 min. Next, pre-cooled CuBr (128 mg, 0.9 mmol) solution in HBr (8 mL) solution was added at rt and stirred for 2 h. The reaction mixture was transferred into a separatory funnel and EtOAc (20 mL) was added, which was extracted with H<sub>2</sub>O (10 mL x 5). The organic layer was washed with saturated NaHCO<sub>3</sub> (50 mL x 2), brine (50 mL) and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Volatiles were evaporated and the residue was column chromatographed (5  $\rightarrow$  10% EtOAc/hexane) to give inseparable mixture of **S5** and 1,2-dibromotriphenylene **S6** (100 mg, 40%; 77:23) as off-white powder.<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 (t, *J* = 8.0 Hz, 1H), 7.52 – 7.70 (m, 5.5H), 7.81 (d, *J* = 8.8 Hz,, 0.3H), 7.94 (dd, *J* = 7.6, 1.2 Hz, 1H), 8.32 (dd, *J* = 8.8, 0.8 Hz, 0.3H), 8.39 –8.42 (m, 0.3H), 8.48 – 8.60 (m, 4.9H), 9.31 – 9.34 (m, 0.3H), 9.52 – 9.56 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  120.02, 121.77, 122.61, 123.07, 123.20, 123.26, 123.38, 123.64, 125.08, 125.31, 127.24, 127.62, 127.80, 127.95, 127.98, 128.25, 128.35, 128.40, 128.85, 128.93, 129.02, 129.05, 129.47, 129.49, 130.27, 130.29, 130.33, 131.09, 131.39, 131.45, 131.53, 132.48, 133.22, 134.77.

### 1.3. Synthesis of 7-bromobenzo[ghi]perylene (S8):

7-Bromobenzo[ghi]perylene **S8** (7-BrBGP) was synthesized from benzo[*ghi*]perylene **S7** (BGP) employing van Dijk's sodium metal reduction methodology<sup>2</sup> followed by bromination protocols as described.



Scheme 2. Synthesis of 7-bromobenzo[ghi]perylene S8.

**7-Bromobenzo**[*ghi*]**perylene** (**S8**). Freshly cut sodium metal (93 mg, 4.0 mmol) was added to a solution of **S7** (450 mg, 1.6 mmol) in THF (30 mL) at rt under Ar. After purging for 2 minutes, reaction was sonicated for 22 h and temperature maintained below 40 °C. Reaction color changed to deep purple and temperature was decreased to -78 °C. After 10 min, a solution of Br<sub>2</sub> (125  $\mu$ L, 389 mg, 2.4 mmol) in THF (3 mL) was added and stirring was continued for 2.5 h. Reaction was quenched with sat. NH<sub>4</sub>Cl and allowed to warm up to rt. Reaction mixture was partitioned between dichloromethane and sat. NH<sub>4</sub>Cl, washed with brine, and dried over Na<sub>2</sub>SO<sub>4</sub>. Volatiles were evaporated and residue was column chromatographed (toluene/hexane;  $100:0 \rightarrow 65:35$ ) to provide **S8** (346 mg, 60%; 78% based on the recovered substrate **S7** (106 mg)) as a yellow solid: <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.01 (t, J = 7.8 Hz, 1H), 8.09 (d, J = 8.8 Hz, 1H), 8.12 (d, J = 8.8 Hz, 1H), 8.19 (d, J = 9.0 Hz, 1H), 8.21 (d of br d, J = 7.5, 0.8 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 8.33 (d, J = 8.2 Hz, 1H) 8.36 (d, J = 8.2 Hz, 1H), 8.44 (d, J = 9.1 Hz, 1H), 8.77 (d, J = 8.5 Hz, 1H), 8.93 (d of br d, J = 7.9, 0.6 Hz, 1H); <sup>13</sup>C NMR  $\delta$  120.9, 121.4, 121.7, 123.7, 124.1, 125.5, 126.0, 126.1, 126.5, 126.6, 127.1, 127.2, 127.7, 127.8, 129.1, 129.3, 129.8, 130.0, 130.2, 130.5, 130.7, 132.3. HRMS (APPI-FTICR) calculated *m/z* for C<sub>22</sub>H<sub>11</sub>Br [M+H]<sup>+</sup> 355.01169; observed *m/z* 355.01198.

#### 2. Mass Spectra Analysis

Additional signal that is only detectable with pyrolysis on occurs at m/z = 226 (C<sub>18</sub>H<sub>10</sub><sup>+</sup>), 227  $({}^{13}CC_{17}H_{10}^+, C_{18}H_{11}^+)$ , 228  $({}^{13}CC_{17}H_{11}^+, C_{18}H_{12}^+)$ , and 253  $({}^{13}CC_{19}H_{12}^+)$  (1), 200  $(C_{16}H_8^+)$ , 201  $({}^{13}CC_{15}H_8^+, C_{16}H_9^+), 202 ({}^{13}CC_{15}H_9^+, C_{16}H_{10}^+), 203 ({}^{13}CC_{15}H_{10}^+), 226 (C_{18}H_{10}^+), 227 ({}^{13}CC_{17}H_{10}^+), 203 ({}^{13}CC_{15}H_{10}^+), 226 (C_{18}H_{10}^+), 227 ({}^{13}CC_{17}H_{10}^+), 203 ({}^{13}CC_{15}H_{10}^+), 226 (C_{18}H_{10}^+), 227 ({}^{13}CC_{17}H_{10}^+), 227 ({}^{$ and 253  $({}^{13}CC_{19}H_{12}^+)$  (2), 254  $(C_{20}H_{14}^+)$  and 255  $({}^{13}CC_{19}H_{14}^+)$  (3), and 275  $(C_{22}H_{11}^+)$ , 276  $({}^{13}CC_{21}H_{11}^+, C_{22}H_{12}^+)$ , 277  $({}^{13}CC_{21}H_{12}^+)$ , 301  $({}^{13}CC_{23}H_{12}^+)$ , and 324  $(C_{26}H_{12}^+)$  (4). For reaction (1), signal at m/z = 227 can be attributed to the 1-triphenylenyl radical (C<sub>18</sub>H<sub>11</sub>) formed via bromine loss from the 1-bromotriphenylene (C<sub>18</sub>H<sub>11</sub>Br) precursor. Ions at m/z = 226 may occur from subsequent hydrogen atom abstraction from 1-triphenylenyl forming 1,2-didehydrotriphenylene (C<sub>18</sub>H<sub>10</sub>), while ions at m/z = 228 are from recombination of the 1-triphenylenyl radical with atomic hydrogen forming triphenylene (C<sub>18</sub>H<sub>12</sub>). Counts at m/z = 253 arise from <sup>13</sup>C-substituted benzo[e]pyrene (C<sub>20</sub>H<sub>12</sub>). For reaction (2), signal at m/z = 201 may correspond to the 4-pyrenyl radical (C<sub>16</sub>H<sub>9</sub>) formed by bromine loss from 4-bromopyrene (C<sub>16</sub>H<sub>9</sub>Br). Ions at m/z = 200 likely arise from subsequent H atom abstraction from 4-pyrenyl forming 4,5-didehydropyrene ( $C_{16}H_8$ ), while ions at m/z = 202 and 203 are from recombination of the 4-pyrenyl radical with atomic hydrogen forming pyrene ( $C_{16}H_{10}$ ) as well as <sup>13</sup>C-pyrene ( $^{13}CC_{15}H_{10}$ ), respectively. Counts at m/z= 226 and 227 occur from the reaction of 4-pyrenyl radicals with acetylene (a minor impurity from the vinylacetylene cylinder), producing 4-ethynylpyrene ( $C_{18}H_{10}$ ) and  ${}^{13}C$ -4-ethynylpyrene  $(^{13}CC_{17}H_{10})$ . <sup>13</sup>C-substituted benzo[e]pyrene is also found at m/z = 253. For reaction (3), peaks at m/z = 254 and 255 are due to phenylphenanthrene (C<sub>20</sub>H<sub>14</sub>) and <sup>13</sup>C-phenylphenanthrene  $(^{13}CC_{19}H_{14})$  isomer(s) formed from phenyl addition to phenanthrene but without subsequent dehydrocyclization. For reaction (4), peaks at m/z = 275, 276, and 277 are due to 7benzo[ghi]perylenyl radicals (C<sub>22</sub>H<sub>11</sub>) from bromine loss of 7-bromobenzo[ghi]perylene  $(C_{22}H_{11}Br)$ , benzo[ghi]pervlene  $(C_{22}H_{12})$  from subsequent recombination with a hydrogen atom, and <sup>13</sup>C-benzo[*ghi*]pervlene (<sup>13</sup>CC<sub>21</sub>H<sub>12</sub>). The peak at m/z = 301 is due to <sup>13</sup>C-substituted coronene  $(^{13}CC_{23}H_{12})$ , and the peak at m/z = 324 can be attributed to H atom abstraction from coronene followed by addition to a second acetylene molecule forming ethynylcoronene ( $C_{26}H_{12}$ ). The photoionization efficiency (PIE) curves of all species shown in the mass spectra (Figure 4), aside from those in Figures 5–7, are shown in Figures S1–S4, and mass-selected threshold photoelectron (ms-TPE) spectra for m/z = 226 (1) and 254 (3) are shown in Figures S5 and S6.

## 3. Test Reaction

A test reaction of the previously studied system<sup>3</sup> of phenyl radicals ( $C_6H_5$ ) with acetylene ( $C_2H_2$ ) was conducted to verify the operating conditions of the experimental setup. Briefly, nitrosobenzene (C<sub>6</sub>H<sub>5</sub>NO, 97%, Sigma-Aldrich) was seeded at a level of a few tenths of a percent in acetylene ( $C_2H_2$ ,  $\geq 99.5$  %; PANGAS; acetone traces removed via ethanol/dry ice bath) set to a backing pressure of 270 Torr. The gas mixture was introduced through a 0.1 mm nozzle to the SiC microreactor, which had a 1 mm inner diameter and heated length of 12 mm kept at  $900 \pm 100$  K. Products formed attained supersonic expansion upon exiting the reactor and passed through a 2 mm diameter skimmer into the spectrometer chamber where they were photoionized by vacuum ultraviolet (VUV) light at photon energies from 8-9 eV. Photoions and photoelectrons are extracted by a constant electric field of 218 V cm<sup>-1</sup> and collected in coincidence via VMI on two position-sensitive delay-line anode detectors (Roentdek DLD40). Photoionization efficiency (PIE) curves and mass-selected threshold photoelectron (ms-TPE) spectra were obtained at mass-tocharge ratios (m/z) of 102 (C<sub>8</sub>H<sub>6</sub><sup>+</sup>) (Figure S7) and 128 (C<sub>10</sub>H<sub>8</sub><sup>+</sup>) (Figure S8) and are compared to reference spectra. At m/z = 102, the experimental PIE curve (Figure S7a) features an ionization onset of  $8.80 \pm 0.05$  eV which matches the phenylacetylene reference onset of  $8.80 \pm 0.05$  eV from Parker et al.<sup>3</sup> while the curve shapes also overlap nicely. The experimental ms-TPES (Figure S7b) has three strong peaks at 8.84, 8.88, and 8.98  $\pm$  0.05 eV which are matched by the reference spectrum from West et al.<sup>4</sup> Similarly, the experimental m/z = 128 PIE (Figure S8a) and ms-TPES (Figure S8b) feature strong overlap with the naphthalene reference curves from Parker et al.<sup>3</sup> and Rühl et al.,<sup>5</sup> respectively. Briefly, the experimental and reference PIEs both exhibit ionization onsets of about  $8.10 \pm 0.05$  eV and match fairly well over the scanned range of 8–9 eV. The experimental ms-TPES contains six peaks at 8.16, 8.24, 8.28, 8.34, 8.46, and  $8.52 \pm 0.05$  eV, which match quite well with the naphthalene reference curve. Each peak can be assigned to the fundamental  $(0_0^0)$ , skeletal longitudinal stretching  $(9_0^1)$ , skeletal breathing  $(7_0^1)$ , C–C in-plane transannular stretching  $(4_0^1)$ , combination  $(4_0^17_0^1)$ , and overtone  $(4_0^2)$  vibronic transitions, respectively, using values from Behlen and Rice<sup>6</sup> and from Cockett et al.<sup>7</sup>

|     | Reactant 1                    | Precursor 2                     | <b>Comment Reactant 1</b> | <b>Comment Precursor 2</b>         | Product                 |
|-----|-------------------------------|---------------------------------|---------------------------|------------------------------------|-------------------------|
| (1) | $C_2H_2$                      | Br<br>Br<br>1-Bromotriphenylene | Gas<br>75 Torr            | T(oven) = 423 K<br>T(SiC) = 1300 K |                         |
| (2) | C4H4<br>(5 % in He)           | Br<br>4-Bromopyrene             | Gas<br>75 Torr            | T(oven) = 403 K<br>T(SiC) = 1400 K | Benzo[ <i>e</i> ]pyrene |
| (3) | C6H5NO<br>(1 % in He)         | Phenanthrene                    | T(Bub) = 293 K<br>90 Torr | T(oven) = 358 K<br>T(SiC) = 1300 K |                         |
| (4) | C <sub>2</sub> H <sub>2</sub> | Benzo[ <i>e</i> ]pyrene         | Gas<br>75 Torr            | T(oven) = 423 K<br>T(SiC) = 1300 K | Benzo[ghi]perylene      |
| (5) | C <sub>2</sub> H <sub>2</sub> | Br<br>J-Bromobenzo[ghi]perylene | Gas<br>165 Torr           | T(oven) = 358 K<br>T(SiC) = 1500 K | Coronene                |

 Table S1. Experimental conditions for reactions (1)–(5).



**Figure S1.** Photoionization efficiency (PIE) curves for the acetylene  $(C_2H_2) - 1$ -bromotriphenylene  $(C_{18}H_{11}Br)$  system at (**a**) m/z = 226  $(C_{18}H_{10})$ , (**b**) m/z = 227  $(C_{18}H_{11})$ , (**c**) m/z = 228  $(C_{18}H_{12})$ , (**d**) m/z = 253  $(^{13}CC_{19}H_{12})$ , (**e**) m/z = 306  $(C_{18}H_{11}^{79}Br)$ , and (**f**) m/z = 308  $(C_{18}H_{11}^{81}Br)$ . The overall error bars (gray area) consist of two parts: 1  $\sigma$  error of the PIE curve averaged over the individual scans and  $\pm 10\%$  based on the accuracy of the photodiode.



**Figure S2.** Photoionization efficiency (PIE) curves for the vinylacetylene (C<sub>4</sub>H<sub>4</sub>) – 4-bromopyrene (C<sub>16</sub>H<sub>9</sub>Br) system at (**a**) m/z = 201 (C<sub>16</sub>H<sub>9</sub>), (**b**) m/z = 202 (C<sub>16</sub>H<sub>10</sub>), (**c**) m/z = 203 ( $^{13}CC_{15}H_{10}$ ), (**d**) m/z = 226 (C<sub>18</sub>H<sub>10</sub>), (**e**) m/z = 227 ( $^{13}CC_{17}H_{10}$ ), (**f**) m/z = 253 ( $^{13}CC_{19}H_{12}$ ), (**g**) m/z = 280 (C<sub>16</sub>H<sub>9</sub><sup>79</sup>Br), and (**h**) m/z = 282 (C<sub>16</sub>H<sub>9</sub><sup>81</sup>Br). The overall error bars (gray area) consist of two parts: 1  $\sigma$  error of the PIE curve averaged over the individual scans and  $\pm 10\%$  based on the accuracy of the photodiode.



**Figure S3.** Photoionization efficiency (PIE) curves for the nitrosobenzene (C<sub>6</sub>H<sub>5</sub>NO) – phenanthrene (C<sub>14</sub>H<sub>10</sub>) system at (**a**) m/z = 178 (C<sub>14</sub>H<sub>10</sub>), (**b**) m/z = 179 ( $^{13}CC_{13}H_{10}$ ), (**c**) m/z = 254 (C<sub>20</sub>H<sub>14</sub>), and (**d**) m/z = 255 ( $^{13}CC_{19}H_{14}$ ). The overall error bars (gray area) consist of two parts: 1  $\sigma$  error of the PIE curve averaged over the individual scans and  $\pm 10\%$  based on the accuracy of the photodiode.



**Figure S4.** Photoionization efficiency (PIE) curves for the acetylene  $(C_2H_2) - 7$ -bromobenzo[*ghi*]perylene  $(C_{22}H_{11}Br)$  system at (**a**) m/z = 275 ( $C_{22}H_{11}$ ), (**b**) m/z = 276 ( $C_{22}H_{12}$ ), (**c**) m/z = 277 ( $^{13}CC_{21}H_{12}$ ), (**d**) m/z = 301 ( $^{13}CC_{24}H_{12}$ ), (**e**) m/z = 324 ( $C_{26}H_{12}$ ), (**f**) m/z = 354 ( $C_{22}H_{11}^{79}Br$ ), and (**g**) m/z = 356 ( $C_{22}H_{11}^{81}Br$ ). The overall error bars (gray area) consist of two parts: 1  $\sigma$  error of the PIE curve averaged over the individual scans and  $\pm 10\%$  based on the accuracy of the photodiode.



**Figure S5.** Mass-selected threshold photoelectron (ms-TPE) spectrum for the acetylene ( $C_2H_2$ ) – 1-bromotriphenylene ( $C_{18}H_{11}Br$ ) system at m/z = 226.



**Figure S6.** Mass-selected threshold photoelectron (ms-TPE) spectrum for the nitrosobenzene ( $C_6H_5NO$ ) – phenanthrene ( $C_{14}H_{10}$ ) system at m/z = 254.



**Figure S7.** Photoionization efficiency (PIE) curves (**a**) and mass-selected threshold photoelectron (ms-TPE) spectra (**b**) for the acetylene ( $C_2H_2$ ) – phenyl ( $C_6H_5$ ) test reaction at m/z = 102. Black: experimental curves; blue: phenylacetylene reference curves obtained from Parker et al.<sup>3</sup> and West et al.<sup>4</sup> The overall error bars (gray area) consist of two parts: 1  $\sigma$  error of the PIE curve averaged over the individual scans and ±10% based on the accuracy of the photodiode.



**Figure S8.** Photoionization efficiency (PIE) curves (**a**) and mass-selected threshold photoelectron (ms-TPE) spectra (**b**) for the acetylene  $(C_2H_2)$  – phenyl  $(C_6H_5)$  test reaction at m/z = 128. Black: experimental curves; blue: naphthalene reference curves obtained from Parker et al.<sup>3</sup> and Rühl et al.<sup>5</sup> Vibronic transition assignments were made using values from Behlen and Rice<sup>6</sup> and from Cockett et al.<sup>7</sup> The overall error bars (gray area) consist of two parts: 1  $\sigma$  error of the PIE curve averaged over the individual scans and ±10% based on the accuracy of the photodiode.

## 



Figure S9. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of compound S2 in CDCl<sub>3</sub>

# 



Figure S10. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of compound S3 in CDCl<sub>3</sub>.



-4.367

Figure S11. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of compound S4 in CDCl<sub>3</sub>.



Figure S12. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of mixture of compounds S5 and S6 (77:23) in CDCl<sub>3</sub>



Figure S13. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound S8 in CDCl<sub>3</sub>

## **Supporting References**

(1) Barker, C. C.; Emmerson, R. G.; Periam, J. D. The monosubstitution of triphenylene. *J. Chem. Soc.* **1955**, 4482.

(2) van Dijk, J. T. M.; Hartwijk, A.; Bleeker, A. C.; Lugtenburg, J.; Cornelisse, J. Gram scale synthesis of benzo[ghi]perylene and coronene. *J. Org. Chem.* **1996**, *61*, 1136.

(3) Parker, D. S.; Kaiser, R. I.; Troy, T. P.; Ahmed, M. Hydrogen abstraction/acetylene addition revealed. *Angew. Chem., Int. Ed.* **2014**, *53*, 7740.

(4) West, B.; Sit, A.; Bodi, A.; Hemberger, P.; Mayer, P. M. Dissociative photoionization and threshold photoelectron spectra of polycyclic aromatic hydrocarbon fragments: An imaging photoelectron photoion coincidence (iPEPICO) study of four substituted benzene radical cations. *J. Phys. Chem. A* **2014**, *118*, 11226.

(5) Rühl, E.; Price, S. D.; Leach, S. Single and double photoionization processes in naphthalene between 8 and 35 eV. *J. Phys. Chem.* **1989**, *93*, 6312.

(6) Behlen, F. M.; Rice, S. A. Intersystem crossing in cold isolated molecules of naphthalene. *J. Chem. Phys.* **1981**, *75*, 5672.

(7) Cockett, M. C. R.; Ozeki, H.; Okuyama, K.; Kimura, K. Vibronic coupling in the ground cationic state of naphthalene: A laser threshold photoelectron [zero kinetic energy (ZEKE)-photoelectron] spectroscopic study. *J. Chem. Phys.* **1993**, *98*, 7763.