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Methods 

Chemicals and Gases: Aluminum iodate hexahydrate (AIH) and deuterated – aluminum iodate 

hexahydrate (AID) particles were synthesized in house as described in detail by Miller et al.1 

Briefly, particles were synthesized using an acid-base precipitation reaction that can be 

summarized in three steps. Synthesis began by dissolving iodine pentoxide (I2O5) powder (Sigma 

Aldrich) in water (i.e., either H2O or D2O) at a 1:1 weight ratio. Following preparation of this 

highly acidic solution, aluminum hydroxide (Al(OH)3) powder (Sigma Aldrich) was introduced 

and heated mildly (90°C) to facilitate dissolution. For large crystal formation, the solution was 

removed from heat and slowly evaporated under ambient conditions precipitating the formation of 

mm-scale particles.1 A molecule can be described as an aluminum atom surrounded by a six-

member hydroxyl ring that is further surrounded by iodates: [Al(H2O)6](IO3)3(HIO3)2 creating 

(AIH) or its deuterated counterpart (AID). The largest particle that could be steadily levitated in 

the present apparatus was approximately 2.5 mm in size. The argon (99.9999%, Ar) used to fill 

the process chamber was obtained from Airgas.   

Ultrasonic Levitator Apparatus: The experiments were carried out utilizing an ultrasonic acoustic 

levitator.2-5  Ultrasonic sound waves were generated from a piezoelectric transducer oscillating at 

58 kHz (Figure S9). A standing wave is generated through multiple reflections between the 

transducer and concave reflector. The distance between the transducer and reflector is adjusted by 

a micrometer manipulator to an integral number of half wavelengths which allows for resonance 

conditions to be maintained following any changes that occur in gas composition, temperature, or 

pressure. A typical distance between the front plate and reflector is selected to 2.5 times the 

wavelength (14.8 mm) resulting in five pressure nodes. The amplitude of the oscillations can be 

optimized through an adjustment of the radio frequency (RF) power between 0.7 and 5.0 W and 

monitoring on an oscilloscope. The levitator is housed within a pressure compatible stainless-steel 

process chamber.2 This enables the AIH and AID particles to be studied in an inert atmosphere 

and elevated higher pressure of argon inert gas. To stabilize the particles in the third pressure node 

of the standing wave, experiments were carried out at a pressure of 1200 Torr measured by a MKS 

626B series capacitance manometer 

Solid Particle Sampling: Solid samples are levitated slightly below the pressure minima of the 

ultrasonic standing wave.2,3 This is feasible since the acoustic radiation pressure from the sound 
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waves counteracts the gravitational force. The horizontal restoring force centers the particle on the 

axis of the levitator. In the single axis levitator, this horizontal force is one order of magnitude 

smaller than the axial force. The particles are introduced to the central pressure node via a 

magnetically coupled wobble stick attached to a side port of the process chamber. A one centimeter 

by one centimeter stainless-steel wire mesh is attached to the end of the wobble stick shaping an 

acoustically transparent spatula inside of the process chamber, which holds the AIH or AID 

sample.2,3 

Pyrolysis: To initiate decomposition of the levitated particle, a 40 W carbon dioxide laser emitting 

at 10.6 μm (Synrad, Inc., model FSV40KFD) was used.2,3 The output power of the laser is 

adjustable between 1 and 40 W by changing the duty cycle of the discharge by externally triggering 

the laser using a pulse delay generator (Quantum Composers, 9518 plus). Pending on the desired 

temperature, the output power of the laser for each experiment ranged between 1-20 W. This output 

of the laser passes a zinc selenide window and was introduced to the center of the levitator by a 

planar copper mirror.  The diameter of the laser beam at the trap center was optimized to 10 mm 

to allow a uniform heating of the levitated particle. A higher temperature range could be accessed 

by focusing the laser beam to a diameter of 0.2 mm onto the particle. This was achieved by using 

an eight-fold beam expander followed by a parabolic copper mirror with a focal length of 300 mm. 

The exiting beam from the laser had a diameter of 2.5 mm with a beam divergence angle of less 

than 7.0 mR. Note that at higher temperatures, the particle became increasingly unstable due to 

change in the density of the gas and change in the speed of sound. To counterbalance this 

instability, an arbitrary waveform generator (Keysight, model 33210A) was exploited to modulate 

the carrier wave through a sine wave with a frequency of 10-100 Hz and an amplitude range of 

100-300 mV thus enhancing the lateral stability.  

Raman Spectroscopy: To trace the chemical modifications of the trapped particle, Raman 

spectroscopy was exploited. The Raman transitions were excited by a 532 nm output of a diode-

pumped, Q-switched Nd:YAG laser (CrystaLaser, model QL532-1W) at a repetition rate of 1 kHz. 

This laser operated with a beam diameter of 0.35 mm and a divergence angle of 3.8 mR. This 

produced an average power output of 200 mW and a pulse width of 13.5 ns. After being reflected 

from a 45° mirror (Edmund Optics, model NT45-991, >99% reflectance) and a 45° dichroic 

beamsplitter (Semrock, RazorEdge, model LPD01-532RU-25×36×2.0), the laser beam entered the 
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process chamber through an antireflection coated window (Figure S10). A plano-convex lens with 

a focal length of 60 mm was exploited to focus the laser beam onto the particle. The lens then 

collimates the Raman-shifted photons backscattered from the levitated particles. The beam splitter 

reflects the incident 532 nm laser beam, but transmits the longer Raman-shifted wavelengths. 

These passed through a 532 nm RazorEdge ultrasteep long-pass edge filter (Semrock, model LP03-

532RE-25), which further decreases the transmitted 532 nm laser light. A 50 mm f/1.8 camera 

(Nikon, Nikkor 2137) lens focuses the light through the 100 μm entrance slit of the spectrograph; 

the resolution of the spectrometer is 9 cm-1. 

The light then is introduced into a Holospec f/1.8 imaging spectrometer (Kaiser Optical Systems, 

model 2004500-501), where the beam is collimated by a lens toward two overlaid holographic 

transmission gratings (Kaiser Optical Systems, model Holoplex HPG-532). Each grating separates 

the Raman-shift wavenumbers into low and high regions (2400 to 100 cm-1, 4000 to 2200 cm-1). 

These gratings disperse the light onto spatially distinct halves of a Peltier-cooled charge-coupled 

device (CCD) detector (Princeton Instruments, PI-MAX2). The CCD detector is composed of 1024 

× 256 pixels each having a pixel size of 26 μm. In order to reduce the fluorescence background, it 

is imperative to conduct pulsed Raman experiments with the pulsed laser and gated detector system 

described above. The time delay between the laser pulse, opening gate to collect signal, and the 

period for which the gate is open are optimized to allow for an early detection of the Raman signal, 

while rejecting the major portion of the ‘delayed’ fluorescent background. Here, the CCD is kept 

at a pulse width of 50 ns per pulse and a gate delay of 487 ns with 1000 gates per exposure. The 

detector operated at a 1 kHz repetition rate. Both the excitation laser and the detector are externally 

triggered through a pulse delay generator (Quantum Composers, 9518 plus) (Figure S11). 

 

Optical and Infrared Videos: Optical videos were obtained by a Phantom Miro 3a10 camera. This 

is equipped with a Navitar Zoom 6000 modular lens system. In tandem with the optical videos, 

thermal imaging videos were collected by a FLIR A6703sc IR camera. Both cameras were 

operated at a frame rate of 30 Hz. Although these cameras could be operated at higher repetition 

rates, 30 Hz was used for optimized synchronization and allowing for longer movies to be 

recorded. Temporal temperature profiles were collected from the maximum temperature readings 

from the IR camera. 
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Table S1a. Vibrational mode assignments for the observed peaks in the Raman spectra of AIH at 

293 K. 

Peaks 

Frequency 

(cm-1) 

(this work) 

Intensity 

(this work) 

Frequency (cm-1) 

 (Literature16-22) 

Literature 

Intensity 
Carrier Assignment Description 

1 3137 m 3162 w [Al(H2O)6]3+ ν3(H2O) O-H stretching 

2 2946 m 
3045, 3000 

3045 

m 

vw 

[Al(H2O)6]3+ 

HIO3 

ν1(H2O) 

ν1 
O-H stretching 

3 834 w 839 w HIO3 ν8 +  νL Combination 

4 816 w 817 vw IO3
- combination Combination 

5 790 s 808, 806, 789 
 

s IO3
- ν3 

IO2 antisymmetric 

stretching 

6 777 s 780 vs HIO3 ν8 
IO2 antisymmetric 

stretching 

7 752 m 
758, 755, 754, 753, 

743 
w IO3

- ν1 
IO2 symmetric 

stretching 

8 713 m 713 vs HIO3 ν3 
IO2 symmetric 

stretching 

9 631 m 631 m HIO3 ν4 IO stretching 

10 618 w 622 w [Al(H2O)6]3+ νL Lattice modes 
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Table S1b. Vibrational mode assignments for the observed peaks in the Raman spectra of AID at 

293 K. 

Peaks 

Frequency 

(cm-1) 

(this work) 

Intensity 

(this work) 

Frequency (cm-1) 

 (Literature16-22) 

Literature 

Intensity 
Carrier Assignment Description 

1 3084 w 3045 vw HIO3 ν1 O-H stretching 

2 2427 s 2416 m [Al(D2O)6]3+ 2 x δ(OD2) O-D bending 

3 841 w 839 w HIO3 ν8 +  νL Combination 

4 817 w 817 vw IO3
- combination Combination 

5 810 w 789 w IO3
- ν3 

IO2 antisymmetric 

stretching 

6 772 vs 780 vs HIO3 ν8 
IO2 antisymmetric 

stretching 

7 748 m 
758, 755, 754, 

753, 743 
w IO3

- ν1 
IO2 symmetric 

stretching 

8 699 w 713 vs HIO3 ν3 
IO2 symmetric 

stretching 

9 661 m 631 m HIO3 ν4 IO stretching 

10 607 w 617, 593 w [Al(D2O)6]3+ νL Lattice modes 
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Figure S1. Raman Spectra of AIH at 375 K where (a) shows the full deconvoluted spectrum (left) with detailed views of the high 

(middle) and low (right) region peaks. (b) represents the high and low regions of the raw data. The spectrum colored in blue corresponds 

to the start of the constant heating at 375 K. The spectrum colored in red is after heating for two hours.

(a) 

(b) 
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Figure S2. Raman Spectra of AIH at 480 K where (a) shows the full deconvoluted spectrum (left) 

with a detailed view of the low (right) region peaks. New deconvoluted peaks are assigned to I2O5 

(purple). See table 3 for new peak assignments. (b) represents the high and low regions of the raw 

data. The spectrum colored in blue corresponds to the start of the constant heating at 480 K. The 

spectrum colored in red is after heating for an hour and fifteen minutes. Small, repeated peaks in 

high region are artificial peaks caused by more surface scattering as the particles surface changes 

becoming shinier and more reflective. 
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(b) 
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Figure S3. Raman Spectra of AIH at 580 K where (a) shows the full deconvoluted spectrum (left) 

with a detailed view of the low (right) region peaks. (b) represents the high and low regions of the 

raw data. The spectrum colored in blue corresponds to the start of the constant heating at 580 K. 

The spectrum colored in red is after heating for 10 minutes. 
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Figure S4. Raman Spectra of AID at 375 K where (a) shows the full deconvoluted spectrum (left) with detailed views of the high 

(middle) and low (right) region peaks. (b) represents the high and low regions of the raw data. The spectrum colored in blue corresponds 

to the start of the constant heating at 375 K. The spectrum colored in red is after heating for one hour.

(a) 

(b) 
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Figure S5. Raman Spectra of AID at 480 K where (a) shows the full deconvoluted spectrum (left) 

with a detailed view of the low (right) region peaks. New deconvoluted peaks are assigned to I2O5 

(purple). See table 4 for new peak assignments. (b) represents the high and low regions of the raw 

data. The spectrum colored in blue corresponds to the start of the constant heating at 480 K. The 

spectrum colored in red is after heating for an hour and fifteen minutes. 
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Figure S6. Raman Spectra of AID at 580 K where (a) shows the full deconvoluted spectrum (left) 

with a detailed view of the low (right) region peaks. (b) represents the low regions of the raw data. 

The spectrum colored in blue corresponds to the start of the constant heating at 580 K. The 

spectrum colored in red is after heating for 20 minutes. 
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Figure S7. Raman Spectra of AIH at 600 K where (a) shows the full deconvoluted spectrum 

(left) with a detailed view of the low (right) region peaks. (b) represents the high and low regions 

of the raw data. The spectrum colored in blue corresponds to the start of the constant heating at 

600 K. The spectrum colored in red is after heating for 10 minutes. 

 

 

 

(a) 

(b) 
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Figure S8. Fitted time traces of selected bands in the Raman spectra for AIH at 600K. The 

component/species are also mentioned in the parentheses of the corresponding band positions. 

See table S2 for rate constants.  

 

 

 

 

Table S2: AIH rate constants for each step in the decomposition process. Selected peak 

wavenumbers are listed in parentheses. Here rate constants for 600 K are included.  

Step T, K k (min-1) Averaged k (min-1) 

1 (3137 cm-1) 

1 (618 cm-1) 
375 ± 5 

0.046 ± 0.001 

0.047 ± 0.001 
0.047 ± 0.001 

2 (777 cm-1) 

(726 cm-1) 
480 ± 5 

0.020 ± 0.001 

0.020 ± 0.001 
0.020 ± 0.001 

3 (726 cm-1) 

(613 cm-1) 

(533 cm-1) 

580 ± 10 

0.075 ± 0.038 

0.118 ± 0.035 

0.182 ± 0.081 

0.125 ± 0.051 

3 (726 cm-1) 

(613 cm-1) 

(533 cm-1) 

600 ± 10 

0.90 ± 0.06 

1.06 ± 0.09 

1.08 ± 0.05 

1.01 ± 0.07 
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Table S3: AID rate constants for each step in the decomposition process. Selected peak 

wavenumbers are listed in parentheses.  

Step T, K k (min-1) Averaged k (min-1) 

1 (2427 cm-1) 

(607 cm-1) 

375 ± 5 0.20 ± 0.01 

0.28 ± 0.02 
0.24 ± 0.02 

 2 (772 cm-1) 

   (728 cm-1) 

480 ± 5 0.020 ± 0.001 

0.020 ± 0.001 
0.020 ± 0.001 

3 (728 cm-1) 

 (627 cm-1) 

(501 cm-1) 

580 ± 10 0.112 ± 0.005 

0.101 ± 0.004 

0.083 ± 0.003 

0.099 ± 0.004 
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S1. Python Script: 

# -*- coding: utf-8 -*- 

""" 

""" 

 

import numpy as np 

import matplotlib.pyplot as plt 

#import scipy.integrate as inte 

#import scipy.special as spec 

#import scipy.optimize as opt 

import scipy.signal as sgnl 

import scipy.interpolate as inter 

from sklearn.decomposition import NMF 

 

def bs_poly(data,chi_sq,deg=3): 

    x=np.arange(0,0.1*len(data),0.1) 

    res=np.zeros(len(data)) 

    fres=np.polyfit(x,data,deg,full=True) 

    #print(fres[1][0]) 

    #plt.plot(x,data) 

    res=np.zeros(len(data)) 

    conv=(chi_sq-fres[1][0])/max(chi_sq,fres[1][0]) 

    #print(conv) 

    for i in range(deg+1): 

        res+=fres[0][i]*x**(deg-i) 

    res=res 

    #plt.plot(x,res) 

    for i in range(len(data)): 
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        res[i]=min(res[i],data[i]) 

    #plt.plot(x,res) 

    return res,fres[1][0],conv 

 

def bsbin(data,binsize=100,dev=1,wscale=0.1): 

    res=np.zeros(len(data)) 

    for i in range(len(data)): 

      start=max(0,i-binsize) 

      end=min(len(data),i+binsize) 

      databin=data[start:end]#np.sort(data[start:end]) 

      w_array=np.exp(-(databin-

np.mean(databin[0:min(binsize,int(binsize*wscale))]))**2/2/(wscale*np.std(databin)**2)) 

      #exp(-(np.arange(end-start)-(end-start)/2)**2/2/(wscale*(end-start))**2) 

      av=np.average(databin,axis=0,weights=w_array) 

      av2=np.average(databin**2,axis=0,weights=w_array) 

      res[i]=av-dev*np.sqrt(av2-av**2) 

    return res 

 

lcor=[-1.088999E-03,3.660977,-1.427E+02] 

#[-9.514080E-04,3.571146,-1.346522E+02] 

hcor=[-3.040E-04,2.912E+00,2.191E+03] 

#[-9.834099E-04,3.235987,2.154054E+03] 

file='Raman Data/AlH_{ind}_{region}.txt' 

ind=3 

region='low'#'low'# 

rawdata=[] 

skipdata=[]#np.array([6,19,30,44,45])#np.array([18,19,20,32,33,34,35,56,68,69,70])#np.array([6

,19,30,44,45])# 

for i in [3]: 
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    print(np.shape(rawdata)) 

    if len(rawdata)==0: 

        rawdata=np.loadtxt(file.format(ind=i,region=region)) 

    else: 

        rawdata=np.vstack((rawdata,np.loadtxt(file.format(ind=i,region=region)))) 

xlist=np.arange(np.min(rawdata[:,0]),np.max(rawdata[:,0])) 

xsize=len(xlist)+1 

lrange=np.linspace(240,2450,2000)#(900,1200,301)#(900,1200,301)# 

hrange=np.linspace(2400,4380,2000) 

miny=0 

maxy=300 

maxy=min(maxy,int(len(rawdata)/xsize)) 

print('maxy =',maxy) 

nvec=2 

deg=1 

thresh=0.1 

normalize=False 

subtract=False 

DoNMF=True 

data=[]#np.zeros((maxy-miny,xsize)) 

for i in np.arange(miny,maxy): 

    k=0 

    for j in skipdata: 

        if i==j: 

            k+=1 

            print(i,k) 

    if k==0: 

        if len(data)==0: 
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            data=np.asarray([rawdata[i*xsize:(i+1)*xsize,3]-

np.min(rawdata[i*xsize:(i+1)*xsize,3])]) 

        else: 

            data=np.vstack((data,np.asarray([rawdata[i*xsize:(i+1)*xsize,3]-

np.min(rawdata[i*xsize:(i+1)*xsize,3])]))) 

ylist=np.arange(miny,maxy-len(skipdata)) 

if region=='low': 

    i1=50 

    i2=960 

    cor=lcor 

    ran=lrange 

elif region=='high': 

    i1=0 

    i2=960 

    cor=hcor 

    ran=hrange 

pdata=np.zeros((len(ylist),len(ran))) 

xlist=cor[0]*xlist**2+cor[1]*xlist+cor[2] 

for i in ylist: 

    #print(i) 

    if subtract: 

        res,chi_sq,conv=bs_poly(data[i,i1:i2],0,deg=deg) 

        res,chi_sq,conv=bs_poly(res,chi_sq,deg=deg) 

        while conv>thresh: 

            res,chi_sq,conv=bs_poly(res,chi_sq,deg=deg) 

            print(conv) 

        data[i,i1:i2]=data[i,i1:i2]-res 

    spl=inter.splrep(xlist[i1:i2],data[i,i1:i2]) 

    pdata[i,:]=inter.splev(ran,spl,ext=3) 
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    if normalize: 

        pdata[i,:]=pdata[i,:]/np.linalg.norm(pdata[i,:]) 

u,s,v=np.linalg.svd(pdata)#data[0:maxy,i1:i2]) 

if DoNMF: 

    model=NMF(n_components=nvec, init='nndsvd') 

    

W=model.fit_transform(abs(pdata))#,W=np.ones((100,3)),H=pdata[2:99:40])#data[0:maxy,i1:i2]

) 

    H=model.components_ 

fig,ax=plt.subplots(2,2) 

ax[0,0].plot(s,'ok') 

for i in range(nvec): 

    if DoNMF: 

        ax[1,0].plot(ylist,W[:,i]) 

        ax[0,1].plot(ran,H[i,:]) 

    else: 

        sgn=np.sign(v[i,abs(v[i,:]).argmax()]) 

        ax[1,0].plot(ylist,sgn*u[:,i]*s[i]) 

        ax[0,1].plot(ran,sgn*v[i,:]*s[i]) 

X,Y=np.meshgrid(ran, ylist) 

cp = ax[1,1].contourf(X, Y, np.log(pdata+300)) 

#fig.colorbar(cp) 

plt.savefig('test.jpg', dpi = 300) 

plt.show() 

""" 

#HNO3 Raman - March4th_low 

#for i in np.arange(0,maxy-3,2):plt.plot(ran+50*i,(pdata[i]-

bsbin(pdata[1],100,0.5,0.25))/1e4+i,label='t = '+str(i)+' min') 

#plt.legend(fontsize='x-small',frameon=False,handlelength=1,loc='upper left') 
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#plt.xlabel('Energy, cm$^{-1}$') 

#plt.ylabel('Raman signal, x10$^4$ counts') 

#Pure IL March2nd 

fig,ax=plt.subplots(4,1,sharex=True,figsize=(10,5),gridspec_kw={'hspace':0.0,'height_ratios': 

[7,1,1,1]}) 

ax[3].invert_xaxis() 

il_low=np.loadtxt('Raman_IL_low.txt').T 

no3m=np.loadtxt('NO3_minus_low.txt').T 

hno3=np.loadtxt('HNO3_low.txt').T 

#il_high=np.loadtxt('Raman_IL_high.txt').T 

pdata[:,1657]=0.5*(pdata[:,1655]+pdata[:,1659]) 

pdata[:,1656]=0.5*(pdata[:,1655]+pdata[:,1657]) 

pdata[:,1658]=0.5*(pdata[:,1657]+pdata[:,1659]) 

#for i in np.arange(0,len(pdata)-2,1):  

#    ax.plot(ran-35*i,1e-4*(pdata[i]-bsbin(pdata[i],100,1,1)+10000*i)) 

#    ax.plot(np.arange((i+1)*200,(i+1)*200-(maxy-2)*35,-35),np.arange(0,maxy-

2),'k:',linewidth=0.5) 

#ax.plot([-1000,-1000],[0,0],label='HNO$_3$ 20%') 

ax[1].plot(il_low[0,100:],il_low[1,100:]/np.max(il_low[1,100:]),label='[EMIM]$^+$[CBH]$^-

$') 

ax[2].plot(no3m[0],no3m[1],label='NO$_3^-$') 

ax[3].plot(hno3[0],hno3[1],label='HNO$_3$') 

#savedata=np.reshape(ran[100:],(1,len(ran[100:]))) 

for i in np.arange(0,45,3): 

    tempdata=np.mean(pdata[i:i+3,100:],axis=0)/5000+(i-31) 

    #savedata=np.vstack((savedata,np.reshape(tempdata,(1,len(ran[100:]))))) 

    tempdata=tempdata-bsbin(tempdata,200,1,1) 

    ax[0].plot(ran[100:],tempdata+i-31)#,label='t = '+str(2*(i-32))+' min') 

#ax[0].legend(fontsize='x-small',frameon=False,handlelength=1,loc='upper left') 
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ax[3].set_xlabel('Wavenumber, cm$^{-1}$') 

#ax[0].set_xlim((2416,354)) 

ax[2].set_ylabel('Reactant spectra') 

ax[0].set_ylabel('Signal, arb. units') 

ax[3].set_xticks(np.arange(0,2500,250)) 

for i in ax[1:]: 

    i.legend(fontsize='x-small',frameon=False,handlelength=0,loc='upper left') 

    i.set_yticks([]) 

""" 

S2. Fitting python script: 

# -*- coding: utf-8 -*- 

""" 

""" 

 

import numpy as np 

import scipy.optimize as opt 

import matplotlib.pyplot as plt 

import scipy.interpolate as inter 

import scipy.misc as ms 

 

gauss=lambda x,x0,A,w:A*np.exp(-0.5*((x-x0)/w)**2)/np.sqrt(2*np.pi)/w#gaussian lineshape 

function 

lorentz=lambda x,x0,A,w:A/np.pi/w/(1+((x-x0)/w)**2)#lorentzian lineshape function 

agauss=lambda x,x0,s,w: gauss(x,x0,1e3,w/(np.exp(-s*(x-x0))+1))#asymmetric gaussian 

lineshape function 

BBR=lambda x,b,T: 1e45*b*2*h*c**2/x**6/(np.exp(1e9*h*c/x/kb/T)-1)#modified 1/lambda^6 

Planck's function 

l_bbr=lambda T,x,b:1e45*2*h*c**2*b/x**6/(np.exp(1e9*h*c/x/kb/T)-1)#formulation of 

modified Planck's function for numerical evaluation of temperature derivative  

lin=lambda x,x0,A,w:A*(x-x0) 
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quad=lambda x,x0,A,w:A*(x-x0)**2 

poly=lambda x,x0,A,w:A*(x-x0)**w 

 

class linpeak:#spectral peak class 

    def __init__(self,x0,A,w,name,fun='gauss'):#initialization 

        self.name=name#peak name 

        self.x0=x0#peak linecenter 

        self.A=A#peak area 

        self.w=w#peak width 

        self.fun=fun#peak lineshape function 

    def val(self,x,x0=None,A=None,w=None):#evavaluation of a peak at wavelength x 

        if x0==None: x0=self.x0 

        if A==None: A=self.A 

        if w==None: w=self.w 

        return self.fun(x,x0,A,w) 

    def der(self,x,n=1,x0=None,A=None,w=None):#evaluation of nth derivative of a peak 

lineshape function 

        return ms.derivative(self.val,x,dx=1e-3,n=n) 

 

def BBR_fit(xdata,ydata,sigma,init=[1e-6,2000]):#non-linear fit of spectral data (ydata) defined 

at wavelength xdata to a modified Plank's formula 

    

fres,pcov=opt.curve_fit(BBR,xdata,ydata,sigma=sigma,absolute_sigma=True,p0=(init[0],init[1])

) 

    perr=np.sqrt(np.diag(pcov)) 

    return fres,BBR(xdata,fres[0],fres[1]),perr 

 

def dirfit(xdata,ydata,peaks,bs=0,der=0,fit_bbr=1,bg=(0,-1),NoPlot=True): #constrained linear 

least-square fit of spectral data 

    a=np.zeros((len(xdata),(der+1)*len(peaks)+2*bs+1+int(fit_bbr))) 
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    for i in range(der+1): 

        for j in range(len(peaks)): 

            a[:,j+i*len(peaks)]=peaks[j].der(xdata,n=i) 

    for i in range(2*bs+1): 

        a[:,(der+1)*len(peaks)+i]=np.real((1j)**(-i)*np.exp(-2*np.pi*((i+1)//2)*1j*(xdata-

xdata[0])/(xdata[-1]-xdata[0]))+(-1j)**(-i)*np.exp(2*np.pi*((i+1)//2)*1j*(xdata-

xdata[0])/(xdata[-1]-xdata[0]))) 

    for i in range(int(fit_bbr)): 

        a[:,-fit_bbr+i]=poly(xdata,2350,1,i)#ms.derivative(l_bbr,2500,n=i,args=(xdata,1e-

6),order=max(3,2*i-1)) 

    b1=np.zeros((der+1)*len(peaks)+2*bs+1+int(fit_bbr)) 

    b2=b1+np.inf 

    #b1=-np.inf 

    cov=np.linalg.inv(np.dot(a.T,a)) 

    res=opt.lsq_linear(a,ydata,bounds=(b1,b2)) 

    fitres=np.zeros(len(xdata)) 

    if not NoPlot: 

        plt.plot(xdata,ydata,'k') 

        #fitres=np.zeros(len(xdata)) 

        for i in np.arange(np.shape(a)[1]): 

            fitres+=res.x[i]*a[:,i] 

        plt.plot(xdata,fitres,'r') 

        for i in range(len(peaks)): 

            plotdata=np.zeros(len(xdata)) 

            for j in range(der+1): 

                plotdata+=res.x[i+j*len(peaks)]*a[:,i+j*len(peaks)] 

            plt.plot(xdata,plotdata,'g') 

    err=np.sqrt(np.diag(cov)*res.cost/len(xdata)) 

    bsdata=np.zeros(len(xdata)) 
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    for i in range(2*bs+1): 

        bsdata+=res.x[i+(der+1)*len(peaks)]*a[:,i+(der+1)*len(peaks)] 

    for i in range(int(fit_bbr)): 

        bsdata+=res.x[-fit_bbr+i]*a[:,-fit_bbr+i] 

    #if fit_bbr>0: 

    #    try: 

    #        

fitted_BBR=BBR_fit(xdata[bg[0]:bg[1]],bsdata[bg[0]:bg[1]],sigma=np.sqrt(ydata[bg[0]:bg[1]]+

1000)/inter.splev(xdata[bg[0]:bg[1]],cs),init=[1e-6,2500]) 

    #    except: 

    #        fitted_BBR=([0,300],[None],[0,0]) 

    #    if not NoPlot: 

    #        plt.plot(xdata,BBR(xdata,fitted_BBR[0][0],fitted_BBR[0][1]),'b') 

    #else: 

    #    fitted_BBR=([0,300],[None],[0,0]) 

    if not NoPlot: 

        plt.plot(xdata,ydata-bsdata,'purple') 

    return res.x,err,fitres,ydata-bsdata 

 

''' 

First define list of peaks, e.g. peaks=list() 

Populate peaks with lineshape functions via peaks.append(linpeak(x0,A,w,name,function)) 

To use a spectral overlay [ovr_x,ovr_y], define an interpolation function 

ovr_fun(x,x0=None,A=None,w=None), where x0,A,w are dummy arguments. 

Populate peaks with the function as peaks.append(linpeak(x0,A,w,name,function=ovr_fun)) to 

ensure that that it return interpolated value upon peaks[i].val(x) call 

Run the main program via  

 

out = dirfit(xdata,ydata,peaks,bs=0,der=0,fit_bbr=1,bg=(1000,-250),NoPlot=True)  
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- xdata is the wavelengths grid,  

- ydata is the spectral intensity 

- bs is the number of sin, cos functions to use for the background (0 is constant offset, integer 

values n > 0 add sin and cos functions with period of  

(lambda_max - lambda_min)/n) 

- der is the highest order of wavelength derivatives for the peaks lineshape function to use (0 - 

use only functions themselves, 1 - use 1st derivative, 2 - use 2nd edrivative and so on) 

set der = 0 if positions and lineshapes are well-known. Otherwise set der = 1 to allow small 

corrections for x0 position, der = 2 to allow correcting x0 and w.  

Higher der values provide better fit but may return non-physical peaks. 

- fit_bbr is the maximum order of Planck's function temperature derivative to use for baseline 

fitting 

(0 - to not use the modified Plank's function, 1 - use the function itself, 2 - use the function + 1st 

derivative and so on) 

- bg is the wavelength range used for the non-linear fit of the baseline to the Planck's formula for 

temperature determination 

The function returns out = (out[0],out[1],out[2],out[3]) 

where out[0] is array containing peak areas, out[1] is 1-sigma uncertrainty for out[0], out[2] is 

amplitude,temperature determined  

in the modified Planck's formula fit and their uncertainties, out[3] is baseline obtained in the 

linear fit 

Set NoPlot to False to enable plotting spectral data, peaks and the Planck's baseline. 

''' 
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Figure S9. A schematic diagram of the levitator. Ultrasonic sound waves are generated by the 

piezoelectric transducer. A standing wave is generated due to multiple reflections between the 

transducer and the concave reflector. The micrometer displayed allows the distance between the 

transducer plate and the reflector to be adjusted. The pressure amplitude of the standing wave is 

monitored by connecting the output of the piezoelectric sensor via connector to an oscilloscope. 

The RF power to the transducer is input via the HF connector.  
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Figure S10. Schematic top view of the complete levitator apparatus displaying the ultrasonic 

levitator, process chamber, carbon dioxide laser, Raman spectrometer, infrared camera, optical 

camera, and some other complementary spectroscopy tools (FTIR spectrometer and fiber optic 

UV-vis spectrometer).6 
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Figure S11. Typical pulse sequence used for operation of the ultrasonic levitator. Both Optical 

and IR camera were internally triggered and run at 30 Hz.  
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