
S1

Supporting Information

Exotic Inverse Kinetic Isotopic Effect in the Thermal Decomposition of

Levitated Aluminum Iodate Hexahydrate Particles

Grace L. Rizzo,1 Souvick Biswas,1 Ivan Antonov,1 Kelsea K. Miller,2 Michelle L. Pantoya,*2

Ralf I. Kaiser*1

1Department of Chemistry, University of Hawai’i at Manoa, Honolulu, HI 96822, USA

2 Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409-1021, USA

*E-mail: ralfk@hawaii.edu

*E-mail: michelle.pantoya@ttu.edu

S2

Methods

Chemicals and Gases: Aluminum iodate hexahydrate (AIH) and deuterated – aluminum iodate

hexahydrate (AID) particles were synthesized in house as described in detail by Miller et al.1

Briefly, particles were synthesized using an acid-base precipitation reaction that can be

summarized in three steps. Synthesis began by dissolving iodine pentoxide (I2O5) powder (Sigma

Aldrich) in water (i.e., either H2O or D2O) at a 1:1 weight ratio. Following preparation of this

highly acidic solution, aluminum hydroxide (Al(OH)3) powder (Sigma Aldrich) was introduced

and heated mildly (90°C) to facilitate dissolution. For large crystal formation, the solution was

removed from heat and slowly evaporated under ambient conditions precipitating the formation of

mm-scale particles.1 A molecule can be described as an aluminum atom surrounded by a six-

member hydroxyl ring that is further surrounded by iodates: [Al(H2O)6](IO3)3(HIO3)2 creating

(AIH) or its deuterated counterpart (AID). The largest particle that could be steadily levitated in

the present apparatus was approximately 2.5 mm in size. The argon (99.9999%, Ar) used to fill

the process chamber was obtained from Airgas.

Ultrasonic Levitator Apparatus: The experiments were carried out utilizing an ultrasonic acoustic

levitator.2-5 Ultrasonic sound waves were generated from a piezoelectric transducer oscillating at

58 kHz (Figure S9). A standing wave is generated through multiple reflections between the

transducer and concave reflector. The distance between the transducer and reflector is adjusted by

a micrometer manipulator to an integral number of half wavelengths which allows for resonance

conditions to be maintained following any changes that occur in gas composition, temperature, or

pressure. A typical distance between the front plate and reflector is selected to 2.5 times the

wavelength (14.8 mm) resulting in five pressure nodes. The amplitude of the oscillations can be

optimized through an adjustment of the radio frequency (RF) power between 0.7 and 5.0 W and

monitoring on an oscilloscope. The levitator is housed within a pressure compatible stainless-steel

process chamber.2 This enables the AIH and AID particles to be studied in an inert atmosphere

and elevated higher pressure of argon inert gas. To stabilize the particles in the third pressure node

of the standing wave, experiments were carried out at a pressure of 1200 Torr measured by a MKS

626B series capacitance manometer

Solid Particle Sampling: Solid samples are levitated slightly below the pressure minima of the

ultrasonic standing wave.2,3 This is feasible since the acoustic radiation pressure from the sound

S3

waves counteracts the gravitational force. The horizontal restoring force centers the particle on the

axis of the levitator. In the single axis levitator, this horizontal force is one order of magnitude

smaller than the axial force. The particles are introduced to the central pressure node via a

magnetically coupled wobble stick attached to a side port of the process chamber. A one centimeter

by one centimeter stainless-steel wire mesh is attached to the end of the wobble stick shaping an

acoustically transparent spatula inside of the process chamber, which holds the AIH or AID

sample.2,3

Pyrolysis: To initiate decomposition of the levitated particle, a 40 W carbon dioxide laser emitting

at 10.6 μm (Synrad, Inc., model FSV40KFD) was used.2,3 The output power of the laser is

adjustable between 1 and 40 W by changing the duty cycle of the discharge by externally triggering

the laser using a pulse delay generator (Quantum Composers, 9518 plus). Pending on the desired

temperature, the output power of the laser for each experiment ranged between 1-20 W. This output

of the laser passes a zinc selenide window and was introduced to the center of the levitator by a

planar copper mirror. The diameter of the laser beam at the trap center was optimized to 10 mm

to allow a uniform heating of the levitated particle. A higher temperature range could be accessed

by focusing the laser beam to a diameter of 0.2 mm onto the particle. This was achieved by using

an eight-fold beam expander followed by a parabolic copper mirror with a focal length of 300 mm.

The exiting beam from the laser had a diameter of 2.5 mm with a beam divergence angle of less

than 7.0 mR. Note that at higher temperatures, the particle became increasingly unstable due to

change in the density of the gas and change in the speed of sound. To counterbalance this

instability, an arbitrary waveform generator (Keysight, model 33210A) was exploited to modulate

the carrier wave through a sine wave with a frequency of 10-100 Hz and an amplitude range of

100-300 mV thus enhancing the lateral stability.

Raman Spectroscopy: To trace the chemical modifications of the trapped particle, Raman

spectroscopy was exploited. The Raman transitions were excited by a 532 nm output of a diode-

pumped, Q-switched Nd:YAG laser (CrystaLaser, model QL532-1W) at a repetition rate of 1 kHz.

This laser operated with a beam diameter of 0.35 mm and a divergence angle of 3.8 mR. This

produced an average power output of 200 mW and a pulse width of 13.5 ns. After being reflected

from a 45° mirror (Edmund Optics, model NT45-991, >99% reflectance) and a 45° dichroic

beamsplitter (Semrock, RazorEdge, model LPD01-532RU-25×36×2.0), the laser beam entered the

S4

process chamber through an antireflection coated window (Figure S10). A plano-convex lens with

a focal length of 60 mm was exploited to focus the laser beam onto the particle. The lens then

collimates the Raman-shifted photons backscattered from the levitated particles. The beam splitter

reflects the incident 532 nm laser beam, but transmits the longer Raman-shifted wavelengths.

These passed through a 532 nm RazorEdge ultrasteep long-pass edge filter (Semrock, model LP03-

532RE-25), which further decreases the transmitted 532 nm laser light. A 50 mm f/1.8 camera

(Nikon, Nikkor 2137) lens focuses the light through the 100 μm entrance slit of the spectrograph;

the resolution of the spectrometer is 9 cm-1.

The light then is introduced into a Holospec f/1.8 imaging spectrometer (Kaiser Optical Systems,

model 2004500-501), where the beam is collimated by a lens toward two overlaid holographic

transmission gratings (Kaiser Optical Systems, model Holoplex HPG-532). Each grating separates

the Raman-shift wavenumbers into low and high regions (2400 to 100 cm-1, 4000 to 2200 cm-1).

These gratings disperse the light onto spatially distinct halves of a Peltier-cooled charge-coupled

device (CCD) detector (Princeton Instruments, PI-MAX2). The CCD detector is composed of 1024

× 256 pixels each having a pixel size of 26 μm. In order to reduce the fluorescence background, it

is imperative to conduct pulsed Raman experiments with the pulsed laser and gated detector system

described above. The time delay between the laser pulse, opening gate to collect signal, and the

period for which the gate is open are optimized to allow for an early detection of the Raman signal,

while rejecting the major portion of the ‘delayed’ fluorescent background. Here, the CCD is kept

at a pulse width of 50 ns per pulse and a gate delay of 487 ns with 1000 gates per exposure. The

detector operated at a 1 kHz repetition rate. Both the excitation laser and the detector are externally

triggered through a pulse delay generator (Quantum Composers, 9518 plus) (Figure S11).

Optical and Infrared Videos: Optical videos were obtained by a Phantom Miro 3a10 camera. This

is equipped with a Navitar Zoom 6000 modular lens system. In tandem with the optical videos,

thermal imaging videos were collected by a FLIR A6703sc IR camera. Both cameras were

operated at a frame rate of 30 Hz. Although these cameras could be operated at higher repetition

rates, 30 Hz was used for optimized synchronization and allowing for longer movies to be

recorded. Temporal temperature profiles were collected from the maximum temperature readings

from the IR camera.

S5

Table S1a. Vibrational mode assignments for the observed peaks in the Raman spectra of AIH at

293 K.

Peaks

Frequency

(cm-1)

(this work)

Intensity

(this work)

Frequency (cm-1)

 (Literature16-22)

Literature

Intensity
Carrier Assignment Description

1 3137 m 3162 w [Al(H2O)6]3+ ν3(H2O) O-H stretching

2 2946 m
3045, 3000

3045

m

vw

[Al(H2O)6]3+

HIO3

ν1(H2O)

ν1
O-H stretching

3 834 w 839 w HIO3 ν8 + νL Combination

4 816 w 817 vw IO3
- combination Combination

5 790 s 808, 806, 789

s IO3
- ν3

IO2 antisymmetric

stretching

6 777 s 780 vs HIO3 ν8
IO2 antisymmetric

stretching

7 752 m
758, 755, 754, 753,

743
w IO3

- ν1
IO2 symmetric

stretching

8 713 m 713 vs HIO3 ν3
IO2 symmetric

stretching

9 631 m 631 m HIO3 ν4 IO stretching

10 618 w 622 w [Al(H2O)6]3+ νL Lattice modes

S6

Table S1b. Vibrational mode assignments for the observed peaks in the Raman spectra of AID at

293 K.

Peaks

Frequency

(cm-1)

(this work)

Intensity

(this work)

Frequency (cm-1)

 (Literature16-22)

Literature

Intensity
Carrier Assignment Description

1 3084 w 3045 vw HIO3 ν1 O-H stretching

2 2427 s 2416 m [Al(D2O)6]3+ 2 x δ(OD2) O-D bending

3 841 w 839 w HIO3 ν8 + νL Combination

4 817 w 817 vw IO3
- combination Combination

5 810 w 789 w IO3
- ν3

IO2 antisymmetric

stretching

6 772 vs 780 vs HIO3 ν8
IO2 antisymmetric

stretching

7 748 m
758, 755, 754,

753, 743
w IO3

- ν1
IO2 symmetric

stretching

8 699 w 713 vs HIO3 ν3
IO2 symmetric

stretching

9 661 m 631 m HIO3 ν4 IO stretching

10 607 w 617, 593 w [Al(D2O)6]3+ νL Lattice modes

S7

Figure S1. Raman Spectra of AIH at 375 K where (a) shows the full deconvoluted spectrum (left) with detailed views of the high

(middle) and low (right) region peaks. (b) represents the high and low regions of the raw data. The spectrum colored in blue corresponds

to the start of the constant heating at 375 K. The spectrum colored in red is after heating for two hours.

(a)

(b)

S8

Figure S2. Raman Spectra of AIH at 480 K where (a) shows the full deconvoluted spectrum (left)

with a detailed view of the low (right) region peaks. New deconvoluted peaks are assigned to I2O5

(purple). See table 3 for new peak assignments. (b) represents the high and low regions of the raw

data. The spectrum colored in blue corresponds to the start of the constant heating at 480 K. The

spectrum colored in red is after heating for an hour and fifteen minutes. Small, repeated peaks in

high region are artificial peaks caused by more surface scattering as the particles surface changes

becoming shinier and more reflective.

(a)

(b)

S9

Figure S3. Raman Spectra of AIH at 580 K where (a) shows the full deconvoluted spectrum (left)

with a detailed view of the low (right) region peaks. (b) represents the high and low regions of the

raw data. The spectrum colored in blue corresponds to the start of the constant heating at 580 K.

The spectrum colored in red is after heating for 10 minutes.

S10

Figure S4. Raman Spectra of AID at 375 K where (a) shows the full deconvoluted spectrum (left) with detailed views of the high

(middle) and low (right) region peaks. (b) represents the high and low regions of the raw data. The spectrum colored in blue corresponds

to the start of the constant heating at 375 K. The spectrum colored in red is after heating for one hour.

(a)

(b)

S11

Figure S5. Raman Spectra of AID at 480 K where (a) shows the full deconvoluted spectrum (left)

with a detailed view of the low (right) region peaks. New deconvoluted peaks are assigned to I2O5

(purple). See table 4 for new peak assignments. (b) represents the high and low regions of the raw

data. The spectrum colored in blue corresponds to the start of the constant heating at 480 K. The

spectrum colored in red is after heating for an hour and fifteen minutes.

(a)

(b)

S12

Figure S6. Raman Spectra of AID at 580 K where (a) shows the full deconvoluted spectrum (left)

with a detailed view of the low (right) region peaks. (b) represents the low regions of the raw data.

The spectrum colored in blue corresponds to the start of the constant heating at 580 K. The

spectrum colored in red is after heating for 20 minutes.

(a)

(b)

S13

Figure S7. Raman Spectra of AIH at 600 K where (a) shows the full deconvoluted spectrum

(left) with a detailed view of the low (right) region peaks. (b) represents the high and low regions

of the raw data. The spectrum colored in blue corresponds to the start of the constant heating at

600 K. The spectrum colored in red is after heating for 10 minutes.

(a)

(b)

S14

Figure S8. Fitted time traces of selected bands in the Raman spectra for AIH at 600K. The

component/species are also mentioned in the parentheses of the corresponding band positions.

See table S2 for rate constants.

Table S2: AIH rate constants for each step in the decomposition process. Selected peak

wavenumbers are listed in parentheses. Here rate constants for 600 K are included.

Step T, K k (min-1) Averaged k (min-1)

1 (3137 cm-1)

1 (618 cm-1)
375 ± 5

0.046 ± 0.001

0.047 ± 0.001
0.047 ± 0.001

2 (777 cm-1)

(726 cm-1)
480 ± 5

0.020 ± 0.001

0.020 ± 0.001
0.020 ± 0.001

3 (726 cm-1)

(613 cm-1)

(533 cm-1)

580 ± 10

0.075 ± 0.038

0.118 ± 0.035

0.182 ± 0.081

0.125 ± 0.051

3 (726 cm-1)

(613 cm-1)

(533 cm-1)

600 ± 10

0.90 ± 0.06

1.06 ± 0.09

1.08 ± 0.05

1.01 ± 0.07

S15

Table S3: AID rate constants for each step in the decomposition process. Selected peak

wavenumbers are listed in parentheses.

Step T, K k (min-1) Averaged k (min-1)

1 (2427 cm-1)

(607 cm-1)

375 ± 5 0.20 ± 0.01

0.28 ± 0.02
0.24 ± 0.02

 2 (772 cm-1)

 (728 cm-1)

480 ± 5 0.020 ± 0.001

0.020 ± 0.001
0.020 ± 0.001

3 (728 cm-1)

 (627 cm-1)

(501 cm-1)

580 ± 10 0.112 ± 0.005

0.101 ± 0.004

0.083 ± 0.003

0.099 ± 0.004

S16

S1. Python Script:

-*- coding: utf-8 -*-

"""

"""

import numpy as np

import matplotlib.pyplot as plt

#import scipy.integrate as inte

#import scipy.special as spec

#import scipy.optimize as opt

import scipy.signal as sgnl

import scipy.interpolate as inter

from sklearn.decomposition import NMF

def bs_poly(data,chi_sq,deg=3):

 x=np.arange(0,0.1*len(data),0.1)

 res=np.zeros(len(data))

 fres=np.polyfit(x,data,deg,full=True)

 #print(fres[1][0])

 #plt.plot(x,data)

 res=np.zeros(len(data))

 conv=(chi_sq-fres[1][0])/max(chi_sq,fres[1][0])

 #print(conv)

 for i in range(deg+1):

 res+=fres[0][i]*x**(deg-i)

 res=res

 #plt.plot(x,res)

 for i in range(len(data)):

S17

 res[i]=min(res[i],data[i])

 #plt.plot(x,res)

 return res,fres[1][0],conv

def bsbin(data,binsize=100,dev=1,wscale=0.1):

 res=np.zeros(len(data))

 for i in range(len(data)):

 start=max(0,i-binsize)

 end=min(len(data),i+binsize)

 databin=data[start:end]#np.sort(data[start:end])

 w_array=np.exp(-(databin-

np.mean(databin[0:min(binsize,int(binsize*wscale))]))**2/2/(wscale*np.std(databin)**2))

 #exp(-(np.arange(end-start)-(end-start)/2)**2/2/(wscale*(end-start))**2)

 av=np.average(databin,axis=0,weights=w_array)

 av2=np.average(databin**2,axis=0,weights=w_array)

 res[i]=av-dev*np.sqrt(av2-av**2)

 return res

lcor=[-1.088999E-03,3.660977,-1.427E+02]

#[-9.514080E-04,3.571146,-1.346522E+02]

hcor=[-3.040E-04,2.912E+00,2.191E+03]

#[-9.834099E-04,3.235987,2.154054E+03]

file='Raman Data/AlH_{ind}_{region}.txt'

ind=3

region='low'#'low'#

rawdata=[]

skipdata=[]#np.array([6,19,30,44,45])#np.array([18,19,20,32,33,34,35,56,68,69,70])#np.array([6

,19,30,44,45])#

for i in [3]:

S18

 print(np.shape(rawdata))

 if len(rawdata)==0:

 rawdata=np.loadtxt(file.format(ind=i,region=region))

 else:

 rawdata=np.vstack((rawdata,np.loadtxt(file.format(ind=i,region=region))))

xlist=np.arange(np.min(rawdata[:,0]),np.max(rawdata[:,0]))

xsize=len(xlist)+1

lrange=np.linspace(240,2450,2000)#(900,1200,301)#(900,1200,301)#

hrange=np.linspace(2400,4380,2000)

miny=0

maxy=300

maxy=min(maxy,int(len(rawdata)/xsize))

print('maxy =',maxy)

nvec=2

deg=1

thresh=0.1

normalize=False

subtract=False

DoNMF=True

data=[]#np.zeros((maxy-miny,xsize))

for i in np.arange(miny,maxy):

 k=0

 for j in skipdata:

 if i==j:

 k+=1

 print(i,k)

 if k==0:

 if len(data)==0:

S19

 data=np.asarray([rawdata[i*xsize:(i+1)*xsize,3]-

np.min(rawdata[i*xsize:(i+1)*xsize,3])])

 else:

 data=np.vstack((data,np.asarray([rawdata[i*xsize:(i+1)*xsize,3]-

np.min(rawdata[i*xsize:(i+1)*xsize,3])])))

ylist=np.arange(miny,maxy-len(skipdata))

if region=='low':

 i1=50

 i2=960

 cor=lcor

 ran=lrange

elif region=='high':

 i1=0

 i2=960

 cor=hcor

 ran=hrange

pdata=np.zeros((len(ylist),len(ran)))

xlist=cor[0]*xlist**2+cor[1]*xlist+cor[2]

for i in ylist:

 #print(i)

 if subtract:

 res,chi_sq,conv=bs_poly(data[i,i1:i2],0,deg=deg)

 res,chi_sq,conv=bs_poly(res,chi_sq,deg=deg)

 while conv>thresh:

 res,chi_sq,conv=bs_poly(res,chi_sq,deg=deg)

 print(conv)

 data[i,i1:i2]=data[i,i1:i2]-res

 spl=inter.splrep(xlist[i1:i2],data[i,i1:i2])

 pdata[i,:]=inter.splev(ran,spl,ext=3)

S20

 if normalize:

 pdata[i,:]=pdata[i,:]/np.linalg.norm(pdata[i,:])

u,s,v=np.linalg.svd(pdata)#data[0:maxy,i1:i2])

if DoNMF:

 model=NMF(n_components=nvec, init='nndsvd')

W=model.fit_transform(abs(pdata))#,W=np.ones((100,3)),H=pdata[2:99:40])#data[0:maxy,i1:i2]

)

 H=model.components_

fig,ax=plt.subplots(2,2)

ax[0,0].plot(s,'ok')

for i in range(nvec):

 if DoNMF:

 ax[1,0].plot(ylist,W[:,i])

 ax[0,1].plot(ran,H[i,:])

 else:

 sgn=np.sign(v[i,abs(v[i,:]).argmax()])

 ax[1,0].plot(ylist,sgn*u[:,i]*s[i])

 ax[0,1].plot(ran,sgn*v[i,:]*s[i])

X,Y=np.meshgrid(ran, ylist)

cp = ax[1,1].contourf(X, Y, np.log(pdata+300))

#fig.colorbar(cp)

plt.savefig('test.jpg', dpi = 300)

plt.show()

"""

#HNO3 Raman - March4th_low

#for i in np.arange(0,maxy-3,2):plt.plot(ran+50*i,(pdata[i]-

bsbin(pdata[1],100,0.5,0.25))/1e4+i,label='t = '+str(i)+' min')

#plt.legend(fontsize='x-small',frameon=False,handlelength=1,loc='upper left')

S21

#plt.xlabel('Energy, cm$^{-1}$')

#plt.ylabel('Raman signal, x104 counts')

#Pure IL March2nd

fig,ax=plt.subplots(4,1,sharex=True,figsize=(10,5),gridspec_kw={'hspace':0.0,'height_ratios':

[7,1,1,1]})

ax[3].invert_xaxis()

il_low=np.loadtxt('Raman_IL_low.txt').T

no3m=np.loadtxt('NO3_minus_low.txt').T

hno3=np.loadtxt('HNO3_low.txt').T

#il_high=np.loadtxt('Raman_IL_high.txt').T

pdata[:,1657]=0.5*(pdata[:,1655]+pdata[:,1659])

pdata[:,1656]=0.5*(pdata[:,1655]+pdata[:,1657])

pdata[:,1658]=0.5*(pdata[:,1657]+pdata[:,1659])

#for i in np.arange(0,len(pdata)-2,1):

ax.plot(ran-35*i,1e-4*(pdata[i]-bsbin(pdata[i],100,1,1)+10000*i))

ax.plot(np.arange((i+1)*200,(i+1)*200-(maxy-2)*35,-35),np.arange(0,maxy-

2),'k:',linewidth=0.5)

#ax.plot([-1000,-1000],[0,0],label='HNO$_3$ 20%')

ax[1].plot(il_low[0,100:],il_low[1,100:]/np.max(il_low[1,100:]),label='[EMIM]$^+$[CBH]$^-

$')

ax[2].plot(no3m[0],no3m[1],label='NO$_3^-$')

ax[3].plot(hno3[0],hno3[1],label='HNO$_3$')

#savedata=np.reshape(ran[100:],(1,len(ran[100:])))

for i in np.arange(0,45,3):

 tempdata=np.mean(pdata[i:i+3,100:],axis=0)/5000+(i-31)

 #savedata=np.vstack((savedata,np.reshape(tempdata,(1,len(ran[100:])))))

 tempdata=tempdata-bsbin(tempdata,200,1,1)

 ax[0].plot(ran[100:],tempdata+i-31)#,label='t = '+str(2*(i-32))+' min')

#ax[0].legend(fontsize='x-small',frameon=False,handlelength=1,loc='upper left')

S22

ax[3].set_xlabel('Wavenumber, cm$^{-1}$')

#ax[0].set_xlim((2416,354))

ax[2].set_ylabel('Reactant spectra')

ax[0].set_ylabel('Signal, arb. units')

ax[3].set_xticks(np.arange(0,2500,250))

for i in ax[1:]:

 i.legend(fontsize='x-small',frameon=False,handlelength=0,loc='upper left')

 i.set_yticks([])

"""

S2. Fitting python script:

-*- coding: utf-8 -*-

"""

"""

import numpy as np

import scipy.optimize as opt

import matplotlib.pyplot as plt

import scipy.interpolate as inter

import scipy.misc as ms

gauss=lambda x,x0,A,w:A*np.exp(-0.5*((x-x0)/w)**2)/np.sqrt(2*np.pi)/w#gaussian lineshape

function

lorentz=lambda x,x0,A,w:A/np.pi/w/(1+((x-x0)/w)**2)#lorentzian lineshape function

agauss=lambda x,x0,s,w: gauss(x,x0,1e3,w/(np.exp(-s*(x-x0))+1))#asymmetric gaussian

lineshape function

BBR=lambda x,b,T: 1e45*b*2*h*c**2/x**6/(np.exp(1e9*h*c/x/kb/T)-1)#modified 1/lambda^6

Planck's function

l_bbr=lambda T,x,b:1e45*2*h*c**2*b/x**6/(np.exp(1e9*h*c/x/kb/T)-1)#formulation of

modified Planck's function for numerical evaluation of temperature derivative

lin=lambda x,x0,A,w:A*(x-x0)

S23

quad=lambda x,x0,A,w:A*(x-x0)**2

poly=lambda x,x0,A,w:A*(x-x0)**w

class linpeak:#spectral peak class

 def __init__(self,x0,A,w,name,fun='gauss'):#initialization

 self.name=name#peak name

 self.x0=x0#peak linecenter

 self.A=A#peak area

 self.w=w#peak width

 self.fun=fun#peak lineshape function

 def val(self,x,x0=None,A=None,w=None):#evavaluation of a peak at wavelength x

 if x0==None: x0=self.x0

 if A==None: A=self.A

 if w==None: w=self.w

 return self.fun(x,x0,A,w)

 def der(self,x,n=1,x0=None,A=None,w=None):#evaluation of nth derivative of a peak

lineshape function

 return ms.derivative(self.val,x,dx=1e-3,n=n)

def BBR_fit(xdata,ydata,sigma,init=[1e-6,2000]):#non-linear fit of spectral data (ydata) defined

at wavelength xdata to a modified Plank's formula

fres,pcov=opt.curve_fit(BBR,xdata,ydata,sigma=sigma,absolute_sigma=True,p0=(init[0],init[1])

)

 perr=np.sqrt(np.diag(pcov))

 return fres,BBR(xdata,fres[0],fres[1]),perr

def dirfit(xdata,ydata,peaks,bs=0,der=0,fit_bbr=1,bg=(0,-1),NoPlot=True): #constrained linear

least-square fit of spectral data

 a=np.zeros((len(xdata),(der+1)*len(peaks)+2*bs+1+int(fit_bbr)))

S24

 for i in range(der+1):

 for j in range(len(peaks)):

 a[:,j+i*len(peaks)]=peaks[j].der(xdata,n=i)

 for i in range(2*bs+1):

 a[:,(der+1)*len(peaks)+i]=np.real((1j)**(-i)*np.exp(-2*np.pi*((i+1)//2)*1j*(xdata-

xdata[0])/(xdata[-1]-xdata[0]))+(-1j)**(-i)*np.exp(2*np.pi*((i+1)//2)*1j*(xdata-

xdata[0])/(xdata[-1]-xdata[0])))

 for i in range(int(fit_bbr)):

 a[:,-fit_bbr+i]=poly(xdata,2350,1,i)#ms.derivative(l_bbr,2500,n=i,args=(xdata,1e-

6),order=max(3,2*i-1))

 b1=np.zeros((der+1)*len(peaks)+2*bs+1+int(fit_bbr))

 b2=b1+np.inf

 #b1=-np.inf

 cov=np.linalg.inv(np.dot(a.T,a))

 res=opt.lsq_linear(a,ydata,bounds=(b1,b2))

 fitres=np.zeros(len(xdata))

 if not NoPlot:

 plt.plot(xdata,ydata,'k')

 #fitres=np.zeros(len(xdata))

 for i in np.arange(np.shape(a)[1]):

 fitres+=res.x[i]*a[:,i]

 plt.plot(xdata,fitres,'r')

 for i in range(len(peaks)):

 plotdata=np.zeros(len(xdata))

 for j in range(der+1):

 plotdata+=res.x[i+j*len(peaks)]*a[:,i+j*len(peaks)]

 plt.plot(xdata,plotdata,'g')

 err=np.sqrt(np.diag(cov)*res.cost/len(xdata))

 bsdata=np.zeros(len(xdata))

S25

 for i in range(2*bs+1):

 bsdata+=res.x[i+(der+1)*len(peaks)]*a[:,i+(der+1)*len(peaks)]

 for i in range(int(fit_bbr)):

 bsdata+=res.x[-fit_bbr+i]*a[:,-fit_bbr+i]

 #if fit_bbr>0:

 # try:

 #

fitted_BBR=BBR_fit(xdata[bg[0]:bg[1]],bsdata[bg[0]:bg[1]],sigma=np.sqrt(ydata[bg[0]:bg[1]]+

1000)/inter.splev(xdata[bg[0]:bg[1]],cs),init=[1e-6,2500])

 # except:

 # fitted_BBR=([0,300],[None],[0,0])

 # if not NoPlot:

 # plt.plot(xdata,BBR(xdata,fitted_BBR[0][0],fitted_BBR[0][1]),'b')

 #else:

 # fitted_BBR=([0,300],[None],[0,0])

 if not NoPlot:

 plt.plot(xdata,ydata-bsdata,'purple')

 return res.x,err,fitres,ydata-bsdata

'''

First define list of peaks, e.g. peaks=list()

Populate peaks with lineshape functions via peaks.append(linpeak(x0,A,w,name,function))

To use a spectral overlay [ovr_x,ovr_y], define an interpolation function

ovr_fun(x,x0=None,A=None,w=None), where x0,A,w are dummy arguments.

Populate peaks with the function as peaks.append(linpeak(x0,A,w,name,function=ovr_fun)) to

ensure that that it return interpolated value upon peaks[i].val(x) call

Run the main program via

out = dirfit(xdata,ydata,peaks,bs=0,der=0,fit_bbr=1,bg=(1000,-250),NoPlot=True)

S26

- xdata is the wavelengths grid,

- ydata is the spectral intensity

- bs is the number of sin, cos functions to use for the background (0 is constant offset, integer

values n > 0 add sin and cos functions with period of

(lambda_max - lambda_min)/n)

- der is the highest order of wavelength derivatives for the peaks lineshape function to use (0 -

use only functions themselves, 1 - use 1st derivative, 2 - use 2nd edrivative and so on)

set der = 0 if positions and lineshapes are well-known. Otherwise set der = 1 to allow small

corrections for x0 position, der = 2 to allow correcting x0 and w.

Higher der values provide better fit but may return non-physical peaks.

- fit_bbr is the maximum order of Planck's function temperature derivative to use for baseline

fitting

(0 - to not use the modified Plank's function, 1 - use the function itself, 2 - use the function + 1st

derivative and so on)

- bg is the wavelength range used for the non-linear fit of the baseline to the Planck's formula for

temperature determination

The function returns out = (out[0],out[1],out[2],out[3])

where out[0] is array containing peak areas, out[1] is 1-sigma uncertrainty for out[0], out[2] is

amplitude,temperature determined

in the modified Planck's formula fit and their uncertainties, out[3] is baseline obtained in the

linear fit

Set NoPlot to False to enable plotting spectral data, peaks and the Planck's baseline.

'''

S27

Figure S9. A schematic diagram of the levitator. Ultrasonic sound waves are generated by the

piezoelectric transducer. A standing wave is generated due to multiple reflections between the

transducer and the concave reflector. The micrometer displayed allows the distance between the

transducer plate and the reflector to be adjusted. The pressure amplitude of the standing wave is

monitored by connecting the output of the piezoelectric sensor via connector to an oscilloscope.

The RF power to the transducer is input via the HF connector.

S28

Figure S10. Schematic top view of the complete levitator apparatus displaying the ultrasonic

levitator, process chamber, carbon dioxide laser, Raman spectrometer, infrared camera, optical

camera, and some other complementary spectroscopy tools (FTIR spectrometer and fiber optic

UV-vis spectrometer).6

S29

Figure S11. Typical pulse sequence used for operation of the ultrasonic levitator. Both Optical

and IR camera were internally triggered and run at 30 Hz.

S30

References

(1) Miller, K.K.; Creegan, S.E.; Unruh, D.K.; Pantoya, J.D.; Hill, K.J.; Tran, Q.; Pantoya, M.L.

Acid Base Synthesis of Aluminum Iodate Hexahydrate Powder as a Promising Propellant

Oxidizer. Chem. Eng. J. 2023, 453, 139953.

(2) Brotton, S.J.; Kaiser, R.I. Novel High-Temperature and Pressure-Compatible Ultrasonic

Levitator Apparatus Coupled to Raman and Fourier Transform Infrared Spectrometers.

Rev. Sci. Instrum. 2013, 84, 055114.

 (3) Brotton, S.J.; Kaiser, R.I. In Situ Raman Spectroscopic Study of Gypsum (CaSO4∙2H2O)

and Epsomite (MgSO4∙7H2O) Dehydration Utilizing an Ultrasonic Levitator. J. Phys.

Chem. Lett. 2013, 4, 669-673.

(4) Lucas, M.; Brotton, S.J.; Min, A.; Woodruff, C.; Pantoya, M.L.; Kaiser, R.I. Effects of Size

and Prestressing of Aluminum Particles on the Oxidation of Levitated exo-

Tetrahydrodicyclopentadiene Droplets. J. Phys. Chem. A 2020, 124, 1489-1507.

(5) Brotton, S.J.; Perera, S.D.; Misra, A.; Kleimeier, N.F.; Turner, A.M.; Kaiser, R.I.; Palenik,

M.; Finn, M.T.; Epshteyn, A.; Sun, B.J.; Zhang, L.J.; Chang, A.H.H. A Spectroscopic

Investigation on the Oxidation of exo-Tetrahydrodicyclopentadiene (JP-10; C10H16) Doped

with Titanium-Aluminum-Boron Reactive Metal Nanopowder (RMNP). J. Phys. Chem. A

2022, 126, 125-144.

(6) Brotton, S. J.; Kaiser, R. I. Effects of Nitrogen Dioxide on the Oxidation of Levitated exo-

Tetrahydrodicyclopentadiene (JP-10) Droplets Doped with Aluminum Nanoparticles. J.

Phys. Chem. A 2021, 125, 2727-2742.

