Science Advances

Supplementary Materials for

Formation of the elusive tetrahedral P₃N molecule

Chaojiang Zhang et al.

Corresponding author: André K. Eckhardt, andre.eckhardt@rub.de; Ralf I. Kaiser, ralfk@hawaii.edu

Sci. Adv. **8**, eabo5792 (2022) DOI: 10.1126/sciadv.abo5792

This PDF file includes:

Error determination of computed ionization energies Figs. S1 to S4 Tables S1 to S9 References

Error determination of computed ionization energies

As the identification of different isomers in our studies focuses on the ionization energy of each ionization isomer, performed additional energy computations we also at the CCSD(T)/CBS//B3LYP/cc-pVTZ level of theory for multiple nitrogen- and phosphoruscontaining molecules as benchmarks (Table S1). The adiabatic ionization energies (IEs) were computed by taking the zero-point vibrational energy corrected energy difference between the neutral and ionic species that correspond to similar conformations. Error bounds were determined by subtracting the calculated ionization energy from the error boundaries of the experimentally determined and hence known values for each molecule. Afterward, the average difference to the lower and upper boundary as well as their standard deviation was calculated. Finally, the standard deviation was subtracted from or added to the average difference for the lower and upper boundary, respectively. This conservative analysis yielded errors of -0.08/+0.07 eV, which allows us to distinguish all isomers of interest in this study based on their calculated and/or experimentally determined ionization energy.

Fig. S1. Fourier-transform infrared spectroscopy (FTIR) spectra of the phosphine (PH₃) + nitrogen (N₂) ice before (black) and after (red) processing with energetic electrons. (a) FTIR spectra between 600 to 4000 cm⁻¹. (b) FTIR spectra between 750 to 850 cm⁻¹. The blue line is from the irradiated PH₃ + 15 N₂ ice mixtures. The peak at 788 cm⁻¹ of energetic electrons irradiated PH₃ + N₂ ice can be linked to the P-N ring deformation (*v*₆), which was calculated to be 809 cm⁻¹ at the B3LYP/cc-pVTZ level of theory. The replacement of nitrogen by 15–nitrogen (15 N) shifts the 788 cm⁻¹ feature to 784 cm⁻¹. The calculated vibration energy of ring deformation (*v*₆) of P₃¹⁵N is 799 cm⁻¹, lower than that of P₃N, which is in agreement with experimental observation. However, since the electron exposure synthesizes a wide range of new molecules and other molecules such as prismatic P₃N₃ also have absorption at 824 cm⁻¹ (reference 29). It is cannot be exploited to unambiguously assign the peak at 788 cm⁻¹ is from P₃N.

Fig. S2. Molecular orbitals diagrams for P_4 (right) and P_3N (right) calculated at B3LYP/cc-PVTZ level of theory. Both diagrams were calculated using C_{3v} symmetry to allow for direct comparison of the calculated orbitals.

Fig. S3. Molecular structure of H₂**P**₃**N isomers.** Bond length in picometers (pm), bond angle in degree, point groups, ground states, computed adiabatic ionization energies corrected for the electric field effect (Stark effect) and computational errors (blue), and relative energies (red) are also shown. The energies were computed at the CCSD(T)/CBS//B3LYP/cc-pVTZ level of theory. The atoms are color coded in white (hydrogen), blue (nitrogen), and orange (phosphorus).

Fig. S4. Temperature programmed desorption (TPD) profile of H₂P₃N from the electron processed phosphine (PH₃)–nitrogen (N₂) and phosphine (PH₃)–15–nitrogen (¹⁵N₂) ices via photoionization reflectron time-of-flight mass spectrometry (PI–ReTOF–MS) at a photon energy of 10.49 eV. The shift of the TPD profile from m/z = 109 to m/z = 110 in the temperature range from 175 K to 300 K reveals that the molecule of interest carries a single nitrogen atom.

Table S1. Computed adiabatic ionization energies (IEs) of distinct P₃N isomers along with error limits and previous computational (CCSD(T)/CBS//B3LYP/cc–pVTZ plus zero-point vibrational energy (ZPVE) corrections) and experimental benchmarks of different nitrogen- and phosphorus-containing compounds. An offset of 0.03 eV was subtracted to correct for the electric field effect.

Compounds	Experimental IE (eV)	Experimental Error Limits (eV)	Computed IE (eV)	Computed IE– Experimental IE (max) (eV)	Computed IE– Experimental IE (min) (eV)	IE range after error analysis (eV)	Corrected IE with electric field effect (eV)
Ammonia NH ₃	10.07 ± 0.02	10.05 - 10.09 (57)	10.15	+0.06	+0.10		
Phosphine PH ₃	9.869 ± 0.002	9.867 - 9.871 (57)	9.82	-0.051	-0.047		
Hydrogen cyanide HCN	13.60 ± 0.01	13.59 – 13.61 (57)	13.57	-0.04	-0.02		
Methinophosphide HCP	10.79 ± 0.01	10.78 - 10.80 (58)	10.76	-0.04	-0.02		
Acetonitrile CH ₃ CN	12.20 ± 0.01	12.19 – 12.21 (59)	12.20	-0.01	+0.01		
Methyl Isocyanide CH ₃ NC	11.24 ± 0.01	11.23 – 11.25 (59)	11.25	+0.00	+0.02		
2H-Azirine <i>c</i> -H ₂ CCHN	10.05 ± 0.03	10.02 - 10.08 (59)	10.02	-0.06	+0.00		
P ₃ N			9.44			9.36 - 9.51	9.33 - 9.48
P ₃ N 11			8.42			8.34 - 8.49	8.31 - 8.46
P ₃ N 12			7.94			7.86 - 8.01	7.83 – 7.98
				Average -0.04 ± 0.04 Error Limits -0.08 - +0.00	Average 0.02 ± 0.05 Error Limits -0.02 - +0.07		

Combined Error Limits -0.08 - +0.07

Table S2. Infrared absorption peaks before and after irradiation for phosphine (PH3) + nitrogen $(N_2)/15$ -nitrogen ($^{15}N_2$) ices.

Pristine ice, before irradiation (5 K)				
Assignment	Position with ¹⁴ N (cm ⁻¹)	Position with ¹⁵ N (cm ⁻¹)		
PH ₃ (v ₂)	983	982		
PH3 (v4)	1098	1098		
$PH_3(v_2 + v_4)$	2074, 2087	2075, 2089		
PH ₃ (2v ₄)	2199	2200		
$PH_3(v_1/v_3)$	2314	2315		
$PH_3 (v_1/v_3+v_L)$	2435	2435		
PH3 (v1+v4)	3398	3399		
New peaks after irradiation (5 K)				
v (P–N)	788	784		
v (PH2)	1063	1063		
v (PH)	2270	2270		

Initial kinetic energy of the electrons, Einit	5	
Ice		$PH_3 + N_2$
Irradiation current, $I(nA)$		100 ± 5
Total number of electrons		$(4.5 \pm 0.5) \times 10^{15}$
Average penetration depth, l_{ave} (nm) ⁶	a	490 ± 50
Maximum penetration depth, l_{max} (nm	880 ± 90	
Average kinetic energy of backscattered electron	2.96 ± 0.30	
Fraction of backscattered electrons, f_b	0.12 ± 0.01	
Average kinetic energy of transmitted electrons,	0	
Fraction of transmitted electrons, f_{trans}^{a}		0
Irradiated area, A (cm ²)	1.0 ± 0.1	
$D_{acc}(aV/malacula)$	PH ₃	26 ± 4
Dose (ev/molecule)	N_2	21 ± 3

Note:

^a Parameters obtained using the CASINO software v2.42.

Table S4. Parameters for the vacuum ultraviolet (VUV) light generation used in the present experiments.^a

	Photoionization energy (eV)	$10.49 (3 \omega_1)$	8.53
$2\omega_1 - \omega_2$	Flux $(10^{11} \text{ photons s}^{-1})$	12 ± 1	10 ± 1
	Wavelength (nm)	118.222	145.351
ωı	Wavelength (nm)	355	202.316
Nd:YAG (YAG A)	Wavelength (nm)	355	532
Dye laser (DYE A)	Wavelength (nm)	-	606.948
Duo			Rhodamine
Dye		-	610 and 640
ω2	Wavelength (nm)	-	332.5
Nd:YAG (YAG B)	Wavelength (nm)	-	532
Dye laser (DYE B)	Wavelength (nm)	-	665
Dye		-	DCM
	Nonlinear medium	Xe	Kr

Note:

^a The uncertainty for VUV photon energies is 0.001 nm.

Table S5. Cartesian Coordinates (distances in Å), vibrational frequencies (cm⁻¹), and intensity (km mol⁻¹) for selected structures of P₃N.

P₃N

938.2833

39.6746

10

11

-							
Ν	0.000000	-0.000000	-1.144000	Р	0.403272	0.092766	-1.149072
Р	0.625874	-1.084046	0.181489	Ν	1.393737	-0.628589	-0.000000
Р	0.625874	1.084046	0.181489	Р	-1.436646	0.098649	0.000000
Р	-1.251748	-0.000000	0.181489	Р	0.403272	0.092766	1.149072
	Frequency/	Intensity/			Frequency/	Intensity/	
	cm ⁻¹	km mol ⁻¹			cm ⁻¹	km mol ⁻¹	
	444 4492	1 3595			280 2042	16 4727	
	444 4496	1 3608			356 2358	5 5564	
	544 2406	0.1029			465 2703	2 6853	
	544 2422	0.1029			542 8618	24 2115	
	573 7471	9 1367			685 3898	6 51 55	
	809.6134	14.8447			871.8844	56.0624	
12							
Ν	-0.817775	0.502928	0.000000				
Р	-0.388189	-0.023629	-1.522971				
Р	-0.388189	-0.023629	1.522971				
Р	1.146090	-0.180113	-0.000000				
	Frequency/	Intensity/					
	cm ⁻¹	km mol ⁻¹					
	284 9089	13 7429					
	391 2465	1 4913					
	409 2017	2 4952					
	474 3462	29 529					
	689 4443	27.8686					
	507.1115	21.0000					

Table S6. Cartesian Coordinates (distances in Å), vibrational frequencies (cm⁻¹), and intensity (km mol⁻¹) for selected structures of H₂P₃N.

H_2P_3N

13				14			
Ν	1.915443	0.069833	0.629383	Р	-1.811571	0.112326	-0.094567
Р	0.799638	-0.009703	-0.689723	Ν	-0.236936	0.018824	0.654248
Р	-1.012468	-1.015369	0.132954	Р	1.092883	-1.006969	-0.071587
Р	-0.974084	1.025931	0.129013	Р	1.092341	0.991688	-0.080787
Η	2.805729	-0.372230	0.445472	Н	-2.359973	-1.064983	0.486415
Н	1.589868	-0.129475	1.565195	Н	-1.586265	-0.522449	-1.362031
	Frequency/	Intensity/			Frequency/	Intensity/	
	cm^{-1}	km mol ⁻¹			cm^{-1}	km mol ⁻¹	
	164.7569	10.5528			155.0673	4.9424	
	228.0706	2.0497			181.7655	2.9263	
	246.4608	9.0604			217.8146	2.2195	
	397.5159	2.0754			364.2540	3.3784	
	442.0217	65.0478			498.7113	13.7236	
	481.4911	147.1390			682.6416	12.2584	
	637.2915	1.2766			848.5154	/6.2553	
	///.22/1	02.4324			892.777	41.0003	
	1580 / 49	36 1624			945.5260	27.3889	
	3510 6820	12 5457			2269 6257	29.709 4 84 1787	
	3618 0470	22 4603			2207.0237	73 8892	
	5010.0470	22.4005			2501.2527	15.0072	
15				16			
15 Р	1.889758	0.317965	0.984491	16 N	0.746238	-2.464836	0.000000
15 Р Р	1.889758 0.457531	0.317965 -0.540514	0.984491 -0.547380	16 N P	0.746238 -0.661147	-2.464836 -1.513714	0.000000 0.000000
15 P P N	1.889758 0.457531 -1.135879	0.317965 0.540514 0.335996	0.984491 -0.547380 0.343337	16 N P P	0.746238 -0.661147 0.000000	-2.464836 -1.513714 0.544509	0.000000 0.000000 0.000000
15 P P N P	1.889758 0.457531 -1.135879 -1.104387	0.317965 -0.540514 -0.335996 1.000963	0.984491 -0.547380 0.343337 -0.526925	16 N P P P	0.746238 -0.661147 0.000000 0.140015	-2.464836 -1.513714 0.544509 2.459915	0.000000 0.000000 0.000000 0.000000
15 P P N P H	1.889758 0.457531 -1.135879 -1.104387 3.040926	0.317965 -0.540514 -0.335996 1.000963 0.005141	0.984491 -0.547380 0.343337 -0.526925 0.208072	16 N P P P H	0.746238 -0.661147 0.000000 0.140015 1.296661	-2.464836 -1.513714 0.544509 2.459915 -2.553394	0.000000 0.000000 0.000000 0.000000 0.840353
15 P P N P H H	$\begin{array}{c} 1.889758\\ 0.457531\\ -1.135879\\ -1.104387\\ 3.040926\\ 1.976178\end{array}$	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573	$\begin{array}{c} 0.984491 \\ -0.547380 \\ 0.343337 \\ -0.526925 \\ 0.208072 \\ 1.750700 \end{array}$	16 N P P P H H	$\begin{array}{c} 0.746238 \\ -0.661147 \\ 0.000000 \\ 0.140015 \\ 1.296661 \\ 1.296661 \end{array}$	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394	$\begin{array}{c} 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.840353\\ -0.840353\end{array}$
15 P P N P H H	1.889758 0.457531 -1.135879 -1.104387 3.040926 1.976178 Frequency/	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573 Intensity/	$\begin{array}{c} 0.984491 \\ -0.547380 \\ 0.343337 \\ -0.526925 \\ 0.208072 \\ 1.750700 \end{array}$	16 N P P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 Frequency/	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 Intensity/	$\begin{array}{c} 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.840353\\ -0.840353\end{array}$
15 P P N P H H	1.889758 0.457531 -1.135879 -1.104387 3.040926 1.976178 Frequency/ cm ⁻¹	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573 Intensity/ km mol ⁻¹	$\begin{array}{c} 0.984491 \\ -0.547380 \\ 0.343337 \\ -0.526925 \\ 0.208072 \\ 1.750700 \end{array}$	16 N P P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 Frequency/ cm ⁻¹	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 Intensity/ km mol ⁻¹	$\begin{array}{c} 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.840353\\ -0.840353\end{array}$
15 P P N P H H	1.889758 0.457531 -1.135879 -1.104387 3.040926 1.976178 Frequency/ cm ⁻¹ 46.5454	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573 Intensity/ km mol ⁻¹ 2.7108	0.984491 -0.547380 0.343337 -0.526925 0.208072 1.750700	16 N P P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 Frequency/ cm ⁻¹ 17.5494	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 Intensity/ km mol ⁻¹ 0.3811	0.000000 0.000000 0.000000 0.840353 -0.840353
15 P P N P H H	1.889758 0.457531 -1.135879 -1.104387 3.040926 1.976178 Frequency/ cm ⁻¹ 46.5454 148.1121	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573 Intensity/ km mol ⁻¹ 2.7108 2.0689	0.984491 -0.547380 0.343337 -0.526925 0.208072 1.750700	16 N P P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 Frequency/ cm ⁻¹ 17.5494 29.4234	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 Intensity/ km mol ⁻¹ 0.3811 2.7068	0.000000 0.000000 0.000000 0.840353 -0.840353
15 P P N P H H	1.889758 0.457531 -1.135879 -1.104387 3.040926 1.976178 Frequency/ cm ⁻¹ 46.5454 148.1121 226.2145	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573 Intensity/ km mol ⁻¹ 2.7108 2.0689 4.1758 7.0050	0.984491 -0.547380 0.343337 -0.526925 0.208072 1.750700	16 N P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 Frequency/ cm ⁻¹ 17.5494 29.4234 219.2359	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 -2.553394 Intensity/ km mol ⁻¹ 0.3811 2.7068 12.5258	0.000000 0.000000 0.000000 0.840353 -0.840353
15 P P N P H H	1.889758 0.457531 -1.135879 -1.104387 3.040926 1.976178 Frequency/ cm ⁻¹ 46.5454 148.1121 226.2145 408.5688 440.2827	0.317965 0.540514 0.335996 1.000963 0.005141 0.878573 Intensity/ km mol ⁻¹ 2.7108 2.0689 4.1758 7.0950 7.2841	$\begin{array}{c} 0.984491 \\ -0.547380 \\ 0.343337 \\ -0.526925 \\ 0.208072 \\ 1.750700 \end{array}$	16 N P P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 Frequency/ cm ⁻¹ 17.5494 29.4234 219.2359 345.3853 408 4460	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 -2.553394 Intensity/ km mol ⁻¹ 0.3811 2.7068 12.5258 11.4658 12.7000	0.000000 0.000000 0.000000 0.840353 -0.840353
15 P P N P H H	1.889758 0.457531 -1.135879 -1.104387 3.040926 1.976178 Frequency/ cm ⁻¹ 46.5454 148.1121 226.2145 408.5688 449.2837 551.8420	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573 Intensity/ km mol ⁻¹ 2.7108 2.0689 4.1758 7.0950 7.3841 6.5222	0.984491 -0.547380 0.343337 -0.526925 0.208072 1.750700	16 N P P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 Frequency/ cm ⁻¹ 17.5494 29.4234 219.2359 345.3853 408.4469 461,4909	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 -2.553394 Intensity/ km mol ⁻¹ 0.3811 2.7068 12.5258 11.4658 12.7099 202 7951	0.000000 0.000000 0.000000 0.840353 -0.840353
15 P P H H	1.889758 0.457531 -1.135879 -1.104387 3.040926 1.976178 Frequency/ cm ⁻¹ 46.5454 148.1121 226.2145 408.5688 449.2837 551.8420 700 8081	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573 Intensity/ km mol ⁻¹ 2.7108 2.0689 4.1758 7.0950 7.3841 6.5222 8.2440	0.984491 -0.547380 0.343337 -0.526925 0.208072 1.750700	16 N P P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 Frequency/ cm ⁻¹ 17.5494 29.4234 219.2359 345.3853 408.4469 461.4909 754.0716	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 -2.553394 Intensity/ km mol ⁻¹ 0.3811 2.7068 12.5258 11.4658 12.7099 202.7951 27.0566	0.000000 0.000000 0.000000 0.840353 -0.840353
15 P P H H	1.889758 0.457531 -1.135879 -1.104387 3.040926 1.976178 Frequency/ cm ⁻¹ 46.5454 148.1121 226.2145 408.5688 449.2837 551.8420 700.8081 729 3840	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573 Intensity/ km mol ⁻¹ 2.7108 2.0689 4.1758 7.0950 7.3841 6.5222 8.2440 5.7233	0.984491 -0.547380 0.343337 -0.526925 0.208072 1.750700	16 N P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 1.296661 Frequency/ cm ⁻¹ 17.5494 29.4234 219.2359 345.3853 408.4469 461.4909 754.0716 837 4908	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 -2.553394 Intensity/ km mol ⁻¹ 0.3811 2.7068 12.5258 11.4658 12.7099 202.7951 27.0566 81 7484	0.000000 0.000000 0.000000 0.840353 -0.840353
15 P P N P H H	1.889758 0.457531 -1.135879 -1.104387 3.040926 1.976178 Frequency/ cm ⁻¹ 46.5454 148.1121 226.2145 408.5688 449.2837 551.8420 700.8081 729.3840 1061.8910	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573 Intensity/ km mol ⁻¹ 2.7108 2.0689 4.1758 7.0950 7.3841 6.5222 8.2440 5.7233 11.7423	0.984491 -0.547380 0.343337 -0.526925 0.208072 1.750700	16 N P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 1.296661 Frequency/ cm ⁻¹ 17.5494 29.4234 219.2359 345.3853 408.4469 461.4909 754.0716 837.4908 929.2109	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 -2.553394 Intensity/ km mol ⁻¹ 0.3811 2.7068 12.5258 11.4658 12.7099 202.7951 27.0566 81.7484 2.5060	0.000000 0.000000 0.000000 0.840353 -0.840353
15 P P H H	$\begin{array}{c} 1.889758\\ 0.457531\\ -1.135879\\ -1.104387\\ 3.040926\\ 1.976178\\ \hline \\ Frequency/\\ cm^{-1}\\ 46.5454\\ 148.1121\\ 226.2145\\ 408.5688\\ 449.2837\\ 551.8420\\ 700.8081\\ 729.3840\\ 1061.8910\\ 1092.6631\\ \end{array}$	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573 Intensity/ km mol ⁻¹ 2.7108 2.0689 4.1758 7.0950 7.3841 6.5222 8.2440 5.7233 11.7423 16.1759	0.984491 -0.547380 0.343337 -0.526925 0.208072 1.750700	16 N P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 Frequency/ cm ⁻¹ 17.5494 29.4234 219.2359 345.3853 408.4469 461.4909 754.0716 837.4908 929.2109 1588.2163	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 -2.553394 Intensity/ km mol ⁻¹ 0.3811 2.7068 12.5258 11.4658 12.7099 202.7951 27.0566 81.7484 2.5060 17.7973	0.000000 0.000000 0.000000 0.840353 -0.840353
15 P P H H	$\begin{array}{c} 1.889758\\ 0.457531\\ -1.135879\\ -1.104387\\ 3.040926\\ 1.976178\\ \hline \\ Frequency/\\ cm^{-1}\\ 46.5454\\ 148.1121\\ 226.2145\\ 408.5688\\ 449.2837\\ 551.8420\\ 700.8081\\ 729.3840\\ 1061.8910\\ 1092.6631\\ 2361.5044\\ \end{array}$	0.317965 -0.540514 -0.335996 1.000963 0.005141 -0.878573 Intensity/ km mol ⁻¹ 2.7108 2.0689 4.1758 7.0950 7.3841 6.5222 8.2440 5.7233 11.7423 16.1759 35.2288	0.984491 - 0.547380 0.343337 - 0.526925 0.208072 1.750700	16 N P P H H	0.746238 -0.661147 0.000000 0.140015 1.296661 1.296661 Frequency/ cm ⁻¹ 17.5494 29.4234 219.2359 345.3853 408.4469 461.4909 754.0716 837.4908 929.2109 1588.2163 3533.3944	-2.464836 -1.513714 0.544509 2.459915 -2.553394 -2.553394 -2.553394 Intensity/ km mol ⁻¹ 0.3811 2.7068 12.5258 11.4658 12.7099 202.7951 27.0566 81.7484 2.5060 17.7973 20.0334	0.000000 0.000000 0.000000 0.840353 -0.840353

Table S7. Cartesian Coordinates (distances in Å) and CBS–QB3 energies (Hartrees) for all structures depicted in Fig. 4.

N_2H_4

Ν	0.000000	0.717816	-0.075902
Ν	-0.000000	-0.717816	-0.075902
Н	0.230092	1.098141	0.836948
Н	-0.937290	1.020386	-0.305636
Н	-0.230092	-1.098141	0.836948
Н	0.937290	-1.020386	-0.305636

E(CBS-QB3) = -111.680378

NPH₄

Ν	1.111257	0.042491	0.079480
Р	-0.600492	-0.124139	0.026088
Н	1.540829	0.843038	-0.359016
Н	1.604230	-0.803660	-0.158457
Н	-0.964191	0.497525	-1.211574
Н	-0.952284	1.027752	0.781361

E(CBS-QB3) = -397.956748

P(PH₂)₃

Р	-0.000000	-0.000000	0.799840
Р	0.000000	2.007913	-0.188351
Р	1.738904	-1.003957	-0.188351
Р	-1.738904	-1.003957	-0.188351
Н	-1.442746	-2.307820	0.295909
Н	-1.169992	-1.245804	-1.469847
Η	-1.277258	2.403364	0.295909
Н	-0.493902	1.636144	-1.469847
Н	2.720004	-0.095545	0.295909
Н	1.663894	-0.390341	-1.469847

E(CBS-QB3) = -1367.215597

N(NH₂)₃

Ν	-0.000000	-0.000000	0.397743
Ν	0.000000	1.352030	-0.056639
Ν	1.170892	-0.676015	-0.056639
Ν	-1.170892	-0.676015	-0.056639
Н	-0.700574	1.834697	0.495253
Н	-0.328402	1.386540	-1.026847
Н	-1.238607	-1.524063	0.495253
Н	-1.036578	-0.977674	-1.026847
Н	1.939181	-0.310634	0.495253
Н	1.364980	-0.408866	-1.026847

E(CBS-QB3) = -222.169027

P_2H_4

Р	0.000000	-1.130729	0.000000
Р	-0.000000	1.130728	-0.000000
Н	-0.981428	1.224954	1.026204
Н	-0.981428	1.224954	-1.026204
Η	0.981434	-1.224947	1.026200
Н	0.981434	-1.224947	-1.026200

E(CBS-QB3) = -684.185215

N4	E(CBS-QB3) = -218.508006
P ₄	E(CBS-QB3) = -1363.722909
P ₃ N	E(CBS-QB3) = -1077.427727

N(PH₂)₃

Ν	-2.832244	2.230896	0.404722
Р	-1.110743	1.965808	0.407468
Р	-3.697306	3.082679	-0.846112
Р	-3.689536	1.574459	1.775711
Н	-4.768636	0.927564	1.106101
Η	-4.498470	2.695739	2.121499
Н	-0.677567	3.284806	0.076856
Н	-0.947453	1.520167	-0.938438
Н	-3.118494	2.457114	-1.991084
Н	-2.848643	4.223089	-0.975144

E(CBS-QB3) = -1080.969464

P(PH₂)₂(NH₂)

Р	-2 977255	1 750425	-0 225685
1	1.005056	1.002(00	0.225005
Ν	-1.2858/6	1.903698	0.064023
Р	-3.773492	3.718965	-1.011195
Р	-3.642240	2.094578	1.894922
Н	-3.577724	0.722993	2.261799
Н	-5.028779	2.042508	1.587575
Η	-3.030794	3.648137	-2.220459
Η	-2.836690	4.577910	-0.370250
Η	-0.935848	2.780106	0.428353
Н	-0.713694	1.579990	-0.702624

E(CBS-QB3) = -1080.986122

	NICS	NICS (center of trigons in tetrahedron)				
	(center of tetrahedron)	PPP	PPN	PNN	NNN	$- a_1/e_v$
P4	-61.3	-59.8	_	_	_	-8.13
P ₃ N	-73.7	-55.9	-61.7	_	_	-7.62
P_2N_2	-64.6	_	-59.2	-65.9	_	-7.67
PN ₃	-57.6	_	_	-64.5	-75.5	-10.82
N_4	-73.8	_	_	_	-73.2	-11.28

Table S8. Calculated NICS values and orbital energies of the a_1 (s, π) orbital.

Reactant	Products	$\Delta H_{ m r}^{0}$ / kJ mol $^{-1}$	$\Delta G^{0}_{ m r}$ / kJ mol $^{-1}$
P4	2 P ₂	236.0	189.7
P ₃ N	$P_2 + PN$	122.1	77.9
P_2N_2	2 PN	-8.9	-53.6
P_2N_2	$P_2 + N_2$	-224.7	-265.7
PN ₃	$PN + N_2$	-373.4	-416.9
N4	$2 N_2$	-740.6	-785.4

Table S9. Calculated standard reaction enthalpies and Gibbs free energies at 298 K at the CBS–QB3//B3LYP/cc–pVTZ level of theory.

REFERENCES AND NOTES

- F. Krafft, Phosphorus. From elemental light to chemical element. *Angew. Chem. Int. Ed.* 8, 660–671 (1969).
- L. R. Maxwell, S. B. Hendricks, V. M. Mosley, Electron diffraction by gases. J. Chem. Phys. 3, 699–709 (1935).
- M. T. Nguyen, T. L. Nguyen, A. M. Mebel, R. Flammang, Azido-nitrene is probably the N₄ molecule observed in mass spectrometric experiments. *J. Phys. Chem. A* 107, 5452–5460 (2003).
- 4. A. Bettendorff, Allotropische zustände des arsens. *Justus Liebigs Ann. Chem.* **144**, 110–114 (1867).
- 5. Y. Morino, T. Ukaji, T. Ito, Molecular structure determination by gas electron diffraction at high temperatures. I. Arsenic. *Bull. Chem. Soc. Jpn.* **39**, 64–71 (1966).
- 6. G. M. Rosenblatt, The composition of antimony vapor. J. Phys. Chem. 66, 2259–2260 (1962).
- T. A. Engesser, W. J. Transue, P. Weis, C. C. Cummins, I. Krossing, As–P vs. P–P insertion in AsP₃: Kinetic control of the formation of [AsP₃NO]⁺. *Eur. J. Inorg. Chem.* **2019**, 2607–2612 (2019).
- P. Weis, D. C. Rohner, R. Prediger, B. Butschke, H. Scherer, S. Weber, I. Krossing, First experimental evidence for the elusive tetrahedral cations [EP₃]⁺ (E = S, Se, Te) in the condensed phase. *Chem. Sci.* 10, 10779–10788 (2019).
- 9. D. Opalka, L. V. Poluyanov, W. Domcke, Relativistic Jahn-Teller effects in the photoelectron spectra of tetrahedral P4, As4, Sb4, and Bi4. *J. Chem. Phys.* **135**, 104108 (2011).
- 10. P. Jerabek, G. Frenking, Comparative bonding analysis of N₂ and P₂ versus tetrahedral N₄ and P₄. *Theor. Chem. Acc.* **133**, 1447 (2014).

- S. Urpelainen, J. Niskanen, J. A. Kettunen, M. Huttula, H. Aksela, Valence photoionization and resonant Auger decay of Sb₄ clusters at resonances below the 4*d* ionization threshold. *Phys. Rev. A* 83, 015201 (2011).
- 12. J. A. Kettunen, S. Urpelainen, S. Heinäsmäki, M. Huttula, Dissociation of As₄ clusters following valence photoionization and *3d* core excitation. *Phys. Rev. A* **86**, 023201 (2012).
- 13. S. Rayne, K. Forest, Binary mixed carbon, silicon, nitrogen, and phosphorus cubane derivatives as potential high energy materials. *Comput. Theor. Chem.* **1080**, 10–15 (2016).
- A. Hirsch, Z. Chen, H. Jiao, Spherical aromaticity of inorganic cage molecules. *Angew*. *Chem. Int. Ed.* 40, 2834–2838 (2001).
- P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, Nucleusindependent chemical shifts: A simple and efficient aromaticity probe. *J. Am. Chem. Soc.* 118, 6317–6318 (1996).
- F. Cacace, G. de Petris, A. Troiani, Experimental detection of tetranitrogen. *Science* 295, 480–481 (2002).
- 17. O. Kwon, P. M. Almond, M. L. McKee, Structures and reactions of P₂N₂: A hybrid of elemental N₂ and P₄? *J. Phys. Chem. A* **106**, 6864–6870 (2002).
- L. Wang, P. L. Warburton, P. G. Mezey, A theoretical study of nitrogen-rich phosphorus nitrides P(N_n)_m. J. Phys. Chem. A 109, 1125–1130 (2005).
- G. A. Ozin, High-temperature gas-phase laser Raman spectroscopy: Evidence for the existence and molecular structure of the interpnictides As₃P, As₂P₂, and AsP₃ in mixtures of phosphorus and arsenic vapours and SbP₃ in mixtures of phosphorus and antimony vapours. *J. Chem. Soc. A*, 2307–2310 (1970).
- 20. N. A. Piro, C. C. Cummins, P₂ addition to terminal phosphide M≡P triple bonds: A rational synthesis of *cyclo*-P₃ complexes. *J. Am. Chem. Soc.* **130**, 9524–9535 (2008).

- B. M. Cossairt, M.-C. Diawara, C. C. Cummins, Facile synthesis of AsP₃. *Science* 323, 602–602 (2009).
- 22. N. A. Piro, C. C. Cummins, Tetraphosphabenzenes obtained via a triphosphacyclobutadiene intermediate. *Angew. Chem. Int. Ed.* **48**, 934–938 (2009).
- 23. N. A. Piro, thesis, Massachusetts Institute of Technology, Cambridge, MA (2009).
- 24. B. M. Cossairt, C. C. Cummins, Properties and reactivity patterns of AsP₃: An experimental and computational study of group 15 elemental molecules. *J. Am. Chem. Soc.* 131, 15501– 15511 (2009).
- 25. B. M. Cossairt, C. C. Cummins, A. R. Head, D. L. Lichtenberger, R. J. F. Berger, S. A. Hayes, N. W. Mitzel, G. Wu, On the molecular and electronic structures of AsP₃ and P₄. *J. Am. Chem. Soc.* **132**, 8459–8465 (2010).
- M. Y. Riu, M. Ye, C. C. Cummins, Alleviating strain in organic molecules by incorporation of phosphorus: Synthesis of triphosphatetrahedrane. *J. Am. Chem. Soc.* 143, 16354–16357 (2021).
- 27. Y. Valadbeigi, Phosphorus-doped nitrogen clusters (N_nP_m): Stable high energy density materials. *Chem. Phys. Lett.* **645**, 195–199 (2016).
- 28. A. M. Turner, R. I. Kaiser, Exploiting photoionization reflectron time-of-flight mass spectrometry to explore molecular mass growth processes to complex organic molecules in interstellar and solar system ice analogs. *Acc. Chem. Res.* 53, 2791–2805 (2020).
- C. Zhu, A. K. Eckhardt, S. Chandra, A. M. Turner, P. R. Schreiner, R. I. Kaiser, Identification of a prismatic P₃N₃ molecule formed from electron irradiated phosphinenitrogen ices. *Nat. Commun.* 12, 5467 (2021).
- 30. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, 2004).

- K. K. Irikura, R. D. Johnson, R. N. Kacker, R. Kessel, Uncertainties in scaling factors for ab initio vibrational zero-point energies. *J. Chem. Phys.* 130, 114102 (2009).
- 32. P. Pyykkö, Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: A summary. *J. Phys. Chem. A* **119**, 2326–2337 (2015).
- Y. Naruse, S. Inagaki, in *Orbitals in Chemistry*, S. Inagaki, Ed. (Springer Berlin Heidelberg, 2010), pp. 265–291.
- 34. R. D. Bach, O. Dmitrenko, The effect of carbonyl substitution on the strain energy of small ring compounds and their six-member ring reference compounds. *J. Am. Chem. Soc.* 128, 4598–4611 (2006).
- H. Bock, H. Mueller, Gas-phase reactions. 44. The phosphorus P₄ ↔ 2P₂ equilibrium visualized. *Inorg. Chem.* 23, 4365–4368 (1984).
- 36. B. M. Jones, R. I. Kaiser, Application of reflectron time-of-flight mass spectroscopy in the analysis of astrophysically relevant ices exposed to ionization radiation: Methane (CH₄) and D₄-methane (CD₄) as a case study. *J. Phys. Chem. Lett.* **4**, 1965–1971 (2013).
- N. A. Piro, J. S. Figueroa, J. T. McKellar, C. C. Cummins, Triple-bond reactivity of diphosphorus molecules. *Science* 313, 1276–1279 (2006).
- 38. A. Velian, M. Nava, M. Temprado, Y. Zhou, R. W. Field, C. C. Cummins, A retro Diels– Alder route to diphosphorus chemistry: Molecular precursor synthesis, kinetics of P₂ transfer to 1,3-dienes, and detection of P₂ by molecular beam mass spectrometry. *J. Am. Chem. Soc.* 136, 13586–13589 (2014).
- A. Velian, C. Cummins Christopher, Synthesis and characterization of P₂N₃⁻: An aromatic ion composed of phosphorus and nitrogen. *Science* 348, 1001–1004 (2015).
- 40. G. L. Hou, B. Chen, W. J. Transue, D. A. Hrovat, C. C. Cummins, W. T. Borden, X. B. Wang, Negative ion photoelectron spectroscopy of P₂N₃⁻: Electron affinity and electronic structures of P₂N₃[•]. *Chem. Sci.* 7, 4667–4675 (2016).

- 41. A. Eckhardt, M.-L. Riu, M. Ye, P. Mueller, G. Bistoni, C. Cummins, Taming phosphorus mononitride (PN) (ChemRxiv, 2021); https://doi.org/10.33774/chemrxiv-2021-zxtmf.
- 42. J. L. Martinez, S. A. Lutz, D. M. Beagan, X. Gao, M. Pink, C. H. Chen, V. Carta, P. Moenne-Loccoz, J. M. Smith, Stabilization of the dinitrogen analogue, phosphorus nitride. ACS Cent. Sci. 6, 1572–1577 (2020).
- 43. A. M. Turner, M. J. Abplanalp, S. Y. Chen, Y. T. Chen, A. H. Chang, R. I. Kaiser, A photoionization mass spectroscopic study on the formation of phosphanes in low temperature phosphine ices. *Phys. Chem. Chem. Phys.* **17**, 27281–27291 (2015).
- 44. R. Luna, M. Á. Satorre, M. Domingo, C. Millán, C. Santonja, Density and refractive index of binary CH₄, N₂ and CO₂ ice mixtures. *Icarus* 221, 186–191 (2012).
- 45. D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. *Scanning* 29, 92–101 (2007).
- 46. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 16 Rev. C.01* (2016).
- 47. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A* **38**, 3098–3100 (1988).

- 48. C. Lee, W. Yang, R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **37**, 785–789 (1988).
- 49. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
- 50. T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. *J. Chem. Phys.* **90**, 1007–1023 (1989).
- 51. R. J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga, Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods. *Chem. Phys. Lett.* 165, 513– 522 (1990).
- 52. J. Čížek, On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. *J. Chem. Phys.* 45, 4256–4266 (1966).
- K. Raghavachari, Electron correlation techniques in quantum chemistry: Recent advances. *Annu. Rev. Phys. Chem.* 42, 615–642 (1991).
- 54. J. F. Stanton, Why CCSD(T) works: A different perspective. *Chem. Phys. Lett.* **281**, 130–134 (1997).
- 55. K. A. Peterson, D. E. Woon, T. H. Dunning, Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H₂→H₂+H reaction. J. *Chem. Phys.* 100, 7410–7415 (1994).
- 56. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, A complete basis set model chemistry. VII. Use of the minimum population localization method. *J. Chem. Phys.* 112, 6532–6542 (2000).
- 57. S. G. Lias, Ionization energy evaluation, in *NIST Chemistry WebBook* (NIST Standard Reference Database Number 69, 2022); https://doi.org/10.18434/T4D303.

- 58. D. C. Frost, S. T. Lee, C. A. McDowell, The photoelectron spectrum of HCP and comments on the first photoelectron band of HCN. *Chem. Phys. Lett.* **23**, 472–475 (1973).
- A. M. Turner, S. Chandra, R. C. Fortenberry, R. I. Kaiser, A photoionization reflectron timeof-flight mass spectrometric study on the detection of ethynamine (HCCNH₂) and 2H-azirine (c-H₂ CCHN). *ChemPhysChem* 22, 985–994 (2021).