Supporting Information

Directed Gas Phase Preparation of Singlet Ethylsilanediyl Carbene (HCCSiH; X¹A') - The Isovalent Counterpart of Triplet Propargylene (HCCCH; X³B)

Adam Rettig, Martin Head-Gordon* Department of Chemistry, University of California, Berkeley, CA 94720, USA Corresponding Author: <u>mhg@cchem.berkeley.edu</u>

Srinivas Doddipatla, Zhenghai Yang, Ralf I. Kaiser* Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA Corresponding Author: <u>ralfk@hawaii.edu</u>

					6		
		[i1]				[i2]	
		C _{3v}				C _{2v}	
		-619.3		-576.8			
Si	0.000000	0.000000	0.000000	Si	0.000000	0.000000	0.000000
С	-0.854274	-1.501931	-0.601048	С	-1.385740	0.665319	-0.947500
С	-1.416438	-2.489479	-0.997117	С	-1.385740	-0.665320	-0.947500
Н	0.000000	0.000000	1.473943	Н	-2.015172	1.431230	-1.377092
Н	1.386926	0.000000	-0.499099	Н	0.000000	0.000000	1.473717
Н	-0.709797	1.191598	-0.498997	Н	1.373606	0.000000	-0.534185
Н	-1.914724	-3.362298	-1.347914	Н	-2.015177	-1.431231	-1.377084

Table S1: Geometries of intermediates computed via ω B97M-V//def2-tzvpd. Relative energies are computed via sMP3: ω B97M-V//CBS.

		[i3]			[i4]				
		Cs			Cs				
		-543.2		-537.7					
Si	0.000000	0.000000	0.000000	Si	0.000000	0.000000	0.000000		
С	0.000000	0.000000	1.690359	Н	0.000000	0.000000	1.521865		
С	-0.807437	-0.001497	2.952639	С	1.873965	0.000000	-0.104193		
Н	1.102362	0.000000	1.849234	Н	2.357030	0.000604	-1.080119		
Н	-1.875503	0.002242	2.737876	С	2.675269	-0.000729	0.966700		
Н	-0.589058	0.874483	3.567211	Н	2.264814	-0.001335	1.970632		
Н	-0.594195	-0.882590	3.561763	Н	3.759406	-0.000733	0.885808		

		-520.9		-462.8				
Si	0.000000	0.000000	0.000000	Si	0.000000	0.000000	0.000000	
С	-1.435609	-0.005504	-0.870819	С	0.000000	0.000000	1.681602	
С	-2.552493	-0.009442	-1.546599	С	-0.019317	0.012310	-1.681453	
Н	0.000000	0.000000	1.465207	Н	0.923481	0.000000	2.242241	
Н	1.299293	0.000000	-0.677274	Н	-0.924997	-0.006593	2.239877	
Н	-3.044370	0.912434	-1.846159	Н	-0.016232	-0.907247	-2.248515	
Н	-3.040616	-0.934759	-1.841662	Н	-0.023334	0.941160	-2.233305	

		[i7]								
		Cs								
		-437.9								
Si	0.000000	0.000000	0.000000							
С	0.000000	0.000000	1.617522							
С	-1.274405	0.000000	-1.368558							
Н	0.493160	0.000000	2.572365							
Н	-0.794681	0.008328	-2.344394							
Н	-1.902574	0.883529	-1.268852							
Н	-1.891939	-0.892100	-1.279003							

Table S2: Geometries of products computed via ωB97M-V//def2-tzvpd. Relative energies are computed via sMP3: ωB97M-V//CBS.

		C _{2v}		C _{2v}				
	-486.9				-410.4			
Si	0.000000	0.000000	0.000000	Si	0.000000	0.000000	0.000000	
С	0.000000	0.000000	1.817019	С	0.000000	0.000000	1.688304	
С	-1.244711	0.000000	1.323868	С	0.004466	0.000000	3.005001	
Н	0.422898	0.000000	2.812631	Н	0.377646	-0.843751	3.581926	
Н	-2.234855	0.000000	1.759543	Н	-0.364252	0.843412	3.585310	

		р3			p4			
		Cs			Cs			
		-406.0				-321.7		
Si	0.000000	0.000000	0.000000	Si	0.000000	0.000000	0.000000	
С	1.837023	0.000000	-0.102990	С	1.860857	0.000000	-0.560224	
С	3.030036	-0.000154	-0.306592	С	1.976322	0.000054	0.691721	
Н	0.000000	0.000000	1.516063	Н	0.000000	0.000000	1.537499	
Н	4.082213	-0.000293	-0.471476	Н	2.312622	0.000139	1.706620	

Si	0.000000	0.000000	0.000000	Si	-0.003946	0.000000	-0.002651
С	-1.389952	0.623924	-0.995810	С	-1.401693	0.000000	-0.933726
С	-1.389483	-0.626390	-0.995441	С	-2.453402	0.000000	-1.634145
Н	0.000000	0.000000	1.471856	Н	-0.001566	0.000000	1.464801
Н	1.393799	0.000000	-0.472955	Н	1.351148	0.000000	-0.565841

Table 3 :Geometries of transition states between intermediates computed via ω B97M-V//def2-tzvpd. Relative energies are computed via sMP3: ω B97M-V//CBS.

	0-0				•		
		[i1] → [i2]				[i1] → [i5]	
		Cs		C1			
		-341.2		-347.7			
Si	0.000000	0.000000	0.000000	Si	0.000000	0.000000	0.000000
С	-0.905563	-1.492108	-0.593622	С	-1.457613	-0.044499	-1.073976
С	-1.590068	-2.392332	-1.039303	С	-1.335073	-1.314056	-0.618213
Н	0.231986	-1.635415	0.174963	Н	0.000000	0.000000	1.472106
Н	0.000000	0.000000	1.474913	Н	1.378992	0.000000	-0.522256
Н	1.363533	0.000000	-0.563492	Н	-1.722817	-2.229280	-1.059793
Н	-2.198545	-3.167641	-1.438338	Н	-0.727597	-1.677895	0.324803

					0		D
		[i2] → [i4]		[i3] → [i4]			
		C1		C1			
		-418.8		-429.2			
Si	0.000000	0.000000	0.000000	Si	0.000000	0.000000	0.000000
С	1.313987	-1.723682	-0.142780	С	1.727651	-0.335722	0.120605
С	0.094397	-1.932846	-0.360950	С	1.711900	0.000000	1.491774
Н	2.334544	-2.006755	0.017354	Н	1.555887	-0.756931	2.250009
Н	0.000000	0.000000	1.513813	Н	2.175947	0.910193	1.877335
Н	1.517476	0.000000	-0.262374	Н	0.000000	0.000000	1.592738
Н	-0.633836	-2.699740	-0.543994	Н	2.504449	-0.065333	-0.578511

Н	2.364349	2.901925	-0.357420
Н	0.692702	3.558949	-0.848822

Table S4: Geometries of transition states between intermediates and products computed via $\omega B97M-V//def2-tzvpd$. Relative energies are computed via sMP3: $\omega B97M-V//CBS$.

[i1] → p3							
		[i1] → p3				[i1] → p5	
		C1		Cs			
		-368.9		-253.7			
Si	0.000000	0.000000	0.000000	Si	0.000000	0.000000	0.000000
С	-0.888711	1.443961	-0.674208	С	-1.700902	0.398136	-1.123744
С	-1.572862	2.308346	-1.159266	С	-1.340547	-0.783616	-0.879820
Н	1.352086	0.897109	0.216043	Н	-0.075837	1.748386	-0.057228
Н	0.000000	0.000000	1.474082	Н	-0.823191	1.567615	-0.549988
Н	1.433941	0.000000	-0.485603	Н	0.000000	0.000000	1.466637
Н	-2.167088	3.082572	-1.583384	Н	1.345671	0.000000	-0.583354
				1			

		[:2] \ n1				[:2] \ n1		
		$[12] \rightarrow p_1$				[13] → p1		
		Cs			C1			
		-270.6		-280.0				
Si	0.000000	0.000000	0.000000	Si	0.000000	0.000000	0.000000	
С	0.873321	-0.667969	-1.436732	С	0.000000	0.000000	1.727005	
С	0.873321	0.667972	-1.436731	С	-1.352955	-0.313896	1.391217	
Н	0.000000	0.000000	1.484863	Н	0.462079	0.000000	2.701028	
Н	1.277116	-1.425052	-2.093433	Н	-1.999840	-1.126497	1.695625	
Н	1.231419	0.000000	1.209189	Н	-2.257603	0.632452	1.105559	
Н	1.277115	1.425055	-2.093431	Н	-2.261452	0.664268	1.963708	

	Cs			C1			
-270.6			-280.0				
Si	0.000000	0.000000	0.000000	Si	0.000000	0.000000	0.00000
С	0.873321	-0.667969	-1.436732	С	0.000000	0.000000	1.727005
С	0.873321	0.667972	-1.436731	С	-1.352955	-0.313896	1.391217
Н	0.000000	0.000000	1.484863	Н	0.462079	0.000000	2.701028
Н	1.277116	-1.425052	-2.093433	Н	-1.999840	-1.126497	1.695625
Н	1.231419	0.000000	1.209189	Н	-2.257603	0.632452	1.105559
Н	1.277115	1.425055	-2.093431	Н	-2.261452	0.664268	1.963708
						· · ·	
	0-				0	[i4] > p2	
	0~	[i4] → p1				[i4] → p2	
	0~	$[i4] \rightarrow p1$ C_1				$[i4] \rightarrow p2$ C_1	
c:	0.000000	$[i4] \rightarrow p1$ C_1 -336.5	0.000000	<u> </u>	0.000000	$[i4] \rightarrow p2$ C_1 -353.9	0.000000
Si	0.000000	$[i4] \rightarrow p1$ C_1 -336.5 0.000000 0.760674	0.000000	Si	0.000000	[i4] → p2 C ₁ -353.9 0.000000 1.066785	0.000000
Si C	0.000000 1.846216	$[i4] \rightarrow p1$ C_1 -336.5 0.000000 0.769674 1.657220	0.000000 0.305676	Si C	0.000000 1.371373 2.451087	$[i4] \rightarrow p2$ C_1 -353.9 0.000000 1.066785 1.807522	0.000000
Si C C	0.000000 1.846216 0.955823	$[i4] \rightarrow p1$ C_1 -336.5 0.000000 0.769674 1.657330 0.000000	0.000000 0.305676 -0.043749	Si C C	0.000000 1.371373 2.451987 0.000000	[i4] → p2 C ₁ -353.9 0.000000 1.066785 1.807532 0.000000	0.000000 0.262273 0.307760
Si C H	0.000000 1.846216 0.955823 0.000000 2.022070	$[i4] \rightarrow p1$ C_1 -336.5 0.000000 0.769674 1.657330 0.000000 0.664101	0.000000 0.305676 -0.043749 1.665975 0.280527	Si C C H	0.000000 1.371373 2.451987 0.000000 0.082605	$[i4] \rightarrow p2$ C_1 -353.9 0.000000 1.066785 1.807532 0.000000 0.000000	0.000000 0.262273 0.307760 1.647367
Si C H H	0.000000 1.846216 0.955823 0.000000 2.922070 0.071524	$[i4] \rightarrow p1$ C_1 -336.5 0.000000 0.769674 1.657330 0.000000 0.664101 0.000000	0.000000 0.305676 -0.043749 1.665975 0.289527 1.250227	Si C C H H	0.000000 1.371373 2.451987 0.000000 0.983695 2.428982	$[i4] \rightarrow p2$ C_1 -353.9 0.000000 1.066785 1.807532 0.000000 0.000000 1.282007	0.000000 0.262273 0.307760 1.647367 1.339072 0.459409
Si C C H H	0.000000 1.846216 0.955823 0.000000 2.922070 0.971524 0.008082	$[i4] \rightarrow p1$ C_1 -336.5 0.000000 0.769674 1.657330 0.000000 0.664101 0.000000 2.652771	0.000000 0.305676 -0.043749 1.665975 0.289527 1.359227 0.456062	Si C C H H H	0.000000 1.371373 2.451987 0.000000 0.983695 3.438883 2.200540	$[i4] \rightarrow p2$ C_1 -353.9 0.000000 1.066785 1.807532 0.000000 0.000000 1.383097 2.896196	0.000000 0.262273 0.307760 1.647367 1.339072 0.459499

		[i5] → p6			
		Cs			
	-	-170.8			
Si	0.000000	0.000000	0.000000		
С	-1.431315	-0.094778	-0.881376		
С	-2.510865	0.163091	-1.538868		
Н	0.000000	0.000000	1.465210		
Н	1.308865	0.000000	-0.658697		
Н	-3.333039	-0.693515	-2.030707		
Н	-2.886432	-1.389510	-1.763599		

Table 5: Geometries of transition states between products computed via ω B97M-V//def2-tzvpd. Relative energies are computed via sMP3: ω B97M-V//CBS.

-121.0				-121.9			
Si	-0.062767	-0.086183	0.073070	Si	0.000000	0.000000	0.000000
С	0.026965	0.001523	1.814762	С	0.000000	0.000000	1.765972
С	-0.047514	0.261554	3.134472	С	-0.028708	0.001261	3.064140
Н	1.121746	0.079120	2.282205	Н	1.092270	0.000000	2.215600
Н	-0.241059	-0.624165	3.756313	Н	0.581793	-0.020638	3.953872

p1 → p5				p3 → p4			
Cs				C1			
-94.1						-318.3	
Si	0.000000	0.000000	0.000000	Si	0.000000	0.000000	0.000000
С	-1.088881	0.079717	-1.633286	С	1.871756	0.000000	-0.406579
C -1.739954 0.104904 -0.526823			С	2.162771	-0.583517	0.642726	
Н	0.000000	0.000000	1.479743	Н	0.000000	0.000000	1.536241
Н	H 0.343083 0.000000 -1.584918			Н	2.504813	-1.034226	1.549757

С	1.289444	0.000000	-1.444773	С	-1.397294	0.051727	-0.933125
С	-0.035347	0.000000	-1.769526	С	-2.318623	-0.563657	-1.541139
Н	0.000000	0.000000	1.461972	Н	0.000000	0.000000	1.468240
Н	1.609119	0.000000	-0.059355	Н	1.356377	0.000000	-0.562206

 Table S6: RRKM reaction rate constants and imaginary frequencies of transition states

Reaction	k _f (s⁻¹)	k _b (s⁻¹)	ω _b (cm ⁻¹)	
$[i1] \rightarrow [i2]$	4.99E+10	1.20E+12	-888	
[i1] → [i5]	4.98E+09	4.84E+10	-343	
$[i2] \rightarrow [i4]$	1.64E+12	1.34E+12	-814	
[i3] → [i4]	1.76E+11	3.22E+11	-992	
[i4] → [i5]	1.96E+12	9.63E+11	-874	
[i1] → p3	1.10E+11		-1218	
[i1] → p5	8.04E+08		-1000	
[i2] → p1	1.72E+10		-1610	
[i3] → p1	5.19E+09		-1445	
[i4] → p1	6.70E+10		-1469	
[i4] → p2	2.86E+11		-1318	
[i5] → p6	1.80E+09		-1070	

Table S7: RRKM reaction rate constants and imaginary frequencies of transition states for product rearrangement assuming maximum possible internal energy of **p3**.

Reaction	k _f (s⁻¹)	k _b (s⁻¹)	ω _b (cm ⁻¹)	
p1→ p2	1.09E+10	3.72E+10	-718	
p1 → p3	2.11E+11	2.62E+10	-1158	
p1 → p5	1.82E+10	4.21E+10	-1581	
p3 → p4	9.88E+11	1.10E+13	-335	
p4 → p5	9.77E+08	1.62E+09	-1180	
p5 → p6	1.35E+13	1.82E+12	-80	

Figure S1: Complete potential energy surface of the reaction of $C_2 + SiH_4$ computed via sMP3: $\omega B97M-V//CBS$. Relative energies are given in kJ mol⁻¹.

Figure S2: Potential energy surface of SiC₂H₂ isomerization computed via sMP3: ω B97M-V//CBS. Relative energies are given in kJ mol⁻¹.