Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supplementary information

Directed Gas-Phase Preparation of the Elusive Phosphinosilylidyne (SiPH₂, X²A'') and Cis/Trans Phosphinidenesilyl (HSiPH; X²A') Radicals Under Single-Collision Conditions

Chao He,^a Shane J. Goettl,^a Zhenghai Yang,^a Srinivas Doddipatla,^a Ralf I. Kaiser^{a*}

^a Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA Corresponding Author Prof. Dr. Ralf I. Kaiser: ralfk@hawaii.edu

Mateus Xavier Silva,^b Breno R. L. Galvão^{b*} ^b Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil Corresponding Author Prof. Dr. Breno R L Galvão: brenogalvao@gmail.com

Figure S1. TOF spectra collected at m/z = 60, 61, 62, and 63 for the reaction of the D1-silylidyne radical (SiD; X²II) with phosphine (PH₃; X¹A₁) at center-of-mass (CM) angle of 36°.

Figure S2. Laboratory angular distribution recorded at m/z = 60 and m/z = 61 for the reaction of the D1-silylidyne radical (SiD; X²Π) with phosphine (PH₃; X¹A₁).

Figure S3. Newton diagram for the reaction of ground state atomic silicon (Si; ³P) with phosphine (PH₃) and of the D1-silylidyne radical (SiD; $X^2\Pi$) with phosphine (PH₃). The diagram is simplified by including only the most energetically favorable product channels for the H₂ loss pathway for the reaction of the ground state atomic silicon (Si; ³P) with phosphine (PH₃), and HD loss pathway for the reaction of the D1-silylidyne radical (SiD; $X^2\Pi$) with phosphine (PH₃). Each Newton circle has a radius equal to the maximum CM recoil velocity of its corresponding heavy product. Due to the lower speed ratio of the SiD beam, Newton diagrams and recoil circles were also added for the velocity at the FWHM (full width at half maximum) values.

Table S1. The relative signal ratios between the m/z = 65, 64, 63, 62, 61, and 60 for the reaction of ground state atomic silicon (Si; ³P) with phosphine (PH₃), and for the reaction of the D1-silylidyne radical (SiD; X²\Pi) with phosphine (PH₃), respectively.

	Si + PH ₃ reaction	$SiD + PH_3$ reaction
m/z = 65	No signal	No signal
m/z = 64	No signal	No signal
m/z = 63	No signal	0.04 ± 0.01
m/z = 62	0.03 ± 0.03	0.09 ± 0.01
m/z = 61	0.07 ± 0.03	1
m/z = 60	1	1.10 ± 0.01

Table S2. The H, D, HD, and H₂ loss products from the D1-silylidyne radical (SiD; $X^2\Pi$) plus phosphine (PH₃; X^1A_1) reaction considering isotopes of silicon.

	PH ₃ (m/z 34)				
$S_1D + PH_3$	H loss	D loss	HD loss	H ₂ loss	
²⁸ SiD (92.2%)	²⁸ SiPDH ₂	²⁸ SiPH ₃	²⁸ SiPH ₂	²⁸ SiPDH	
	(m/z 63)	(m/z 62)	(m/z 61)	(m/z 62)	
²⁹ SiD (4.7%)	²⁹ SiPDH ₂	²⁹ SiPH ₃	²⁹ SiPH ₂	²⁹ SiPDH	
	(m/z 64)	(m/z 63)	(m/z 62)	(m/z 63)	
³⁰ SiD (3.1%)	³⁰ SiPDH ₂	³⁰ SiPH ₃	³⁰ SiPH ₂	³⁰ SiPDH	
	(m/z 65)	(m/z 64)	(m/z 63)	(m/z 64)	

Table S3. The H, and H₂ loss products from the silicon atom (Si; ${}^{3}P$) plus phosphine (PH₃; X¹A₁) reaction considering isotopes of silicon.

Si + PH ₃	PH ₃ (m/z 34)		
	H loss	H ₂ loss	
²⁸ Si (92.2%)	²⁸ SiPH ₂ (m/z 61)	²⁸ SiPH (m/z 60)	
²⁹ Si (4.7%)	²⁹ SiPH ₂ (m/z 62)	²⁹ SiPH (m/z 61)	
³⁰ Si (3.1%)	³⁰ SiPH ₂ (m/z 63)	³⁰ SiPH (m/z 62)	

Table S4. Statistical branching ratios (%) for the reaction of the D1-silylidyne radical (SiD; $X^2\Pi$) with phosphine (PH₃; X^1A_1).

$\frac{E_{\rm C}}{(\rm kJ\ mol^{-1})}$	p1'	p1	p2'	p2	p3	p4'	р4
17.7	0	0	15.76	15.76	21.71	15.59	31.19

Table S5. Rate constant (*k*, in s⁻¹) for all unimolecular reactions in the SiD + PH₃ system calculated using RRKM theory at $E_{\rm C} = 17.7$ kJ mol⁻¹.

Reaction	k	Reaction	k	Reaction	k	Reaction	k
i0 → i2a	1.26E+11	i1 → i2b	5.85E+10	i2a → i2b	3.41E+12	i2a → i3	8.45E+10
i2a → i0	3.12E+07	i2b → i1	8.02E+08	i2b → i2a	3.50E+12	i3 → i2a	3.16E+10
i2b → p2	2.31E+07	i3 → p4	1.25E+07	i2a → p3	3.09E+07		
i2b → p2'	2.31E+07	i3 → p4'	1.25E+07				

Table S6. Optimized Cartesian coordinates (Å) and vibrational frequencies (cm⁻¹) for all species involved in the SiD/SiH + PH₃ reaction. The energies are given relative to the reactants at the CCSD(T)-F12/cc-pVQZ-F12//M06-2X/cc-pV(T+d)Z+ZPE(M06-2X/cc-pV(T+d)Z) level in kJ mol⁻¹. To account for the different ZPE among the possible isotopologues, we employ the following notation:

E(D0) – relative energy of the non-deuterated case

E(D1) – relative energy for one deuterium at the first position of the Cartesian coordinates

E(D2) - relative energy for one deuterium at the second position of the Cartesian coordinates

E(D3) – relative energy for one deuterium at the third position of the Cartesian coordinates

E(D4) – relative energy for one deuterium at the fourth position of the Cartesian coordinates

REACTANTS

SiH

Н	0.0000000000	0.0000000000	-0.7578444535
Si	0.0000000000	0.0000000000	0.7578444535

Frequencies

2080.464

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.01333901

 PH_{3}

Η	-0.6826536606	-1.0274842429	-0.6156233055
Η	-0.6826538144	1.0274840772	-0.6156228017
Η	-0.7320439127	0.0000003515	1.1624302654
Р	0.0657489556	-0.0000001858	-0.0019137497

Frequencies

1020.828 1156.119 1156.576 2457.598 2460.576 2462.354

PRODUCTS

H_2

Н	0.0000000000	0.0000000000	0.3694968462
Н	0.0000000000	0.0000000000	-0.3694968462

Frequencies

4464.920

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.00589562

p1: H₂SiP

Н	-0.0001887201	1.2189960445	-1.8473287573
Н	-0.0001887572	-1.2189951724	-1.8473215647
Si	-0.0000453118	0.0000032107	-1.0164390575
Р	0.0003089458	-0.0000040339	1.0340789607

Frequencies

470.927 532.046 637.480 951.198 2270.951 2289.755

$$\begin{split} E(p1-D0 + H_2) &= -87.2\\ E(p1-D0 + HD) &= -87.3\\ E(p1-D1 + H_2) &= -89.1\\ E(p1-D2 + H_2) &= -89.1 \end{split}$$

p2: t-HSiPH

Η	0.0000540530	-1.2015483824	-1.8455445284
Н	-0.0004326876	1.3367092419	1.1678999845
Si	-0.0011210638	0.0596564339	-1.0510345662
Р	0.0015509974	-0.0698774999	1.0066789432

Frequencies

486.108 517.489 618.941 799.884 2184.361 2425.324

$$\begin{split} E(p2-D0 + H_2) &= -67.2\\ E(p2-D0 + HD) &= -67.3\\ E(p2-D1 + H_2) &= -68.8\\ E(p2-D2 + H_2) &= -69.3 \end{split}$$

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.02884715

p3: SiPH₂

Η	0.6119847560	1.0883458853	-1.5867559586
Η	0.6119848955	-1.0883461746	-1.5867583718
Р	-0.0070832451	-0.0000007651	-0.9524594477
Si	-0.0070268171	0.0000010829	1.2061086167

Frequencies

85.664 516.442 519.684 1099.794 2476.686 2489.275

$$\begin{split} E(p3-D0 + H_2) &= -54.5 \\ E(p3-D0 + HD) &= -54.6 \\ E(p3-D1 + H_2) &= -56.6 \\ E(p3-D2 + H_2) &= -56.6 \end{split}$$

p4:c-HSiPH

Η	0.0001236412	-1.3900810571	0.8534957485
Η	0.0003978713	-1.1644669015	-1.9165046913
Si	-0.0002891442	0.0599311195	-1.0656052695
Р	-0.0002405733	0.0247875833	1.0033437233

Frequencies

443.110 496.689 620.344 728.547 2172.667 2384.890

$$\begin{split} E(p4\text{-}D0 + H_2) &= -52.8\\ E(p4\text{-}D0 + HD) &= -52.9\\ E(p4\text{-}D1 + H_2) &= -54.6\\ E(p4\text{-}D2 + H_2) &= -54.4 \end{split}$$

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.02262111

p5: H₂SiPH

Η	-0.0011869734	1.2238955015	-1.8522254331
Η	0.0008003725	-1.2083840326	-1.8778493892
Η	0.0001479545	-1.3725789235	1.0204239941
Si	-0.0004061624	-0.0006313767	-1.0335912507
Р	-0.0011280030	0.0447444991	1.0224291721

Frequencies

471.271
540.246
619.442
630.834
758.777
972.929
2284.226
2307.183
2420.222

E(p5-D0 + H or D) = 12.3E(p5-D1 + H) = 10.1E(p5-D2 + H) = 10.2 E(p5-D3 + H) = 10.1

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.01766472

p6: HSiPH₂

Η	0.6157392084	1.1297506545	-1.4984142360
Н	0.7609067573	-1.0236709519	-1.5202845471
Н	-0.0376407214	-1.4595427092	1.1860358819
Р	-0.0611302598	-0.0022466922	-1.0210012220
Si	0.0230950033	0.0508314562	1.1814841787

Frequencies

209.076 488.062 513.009 519.667 818.151 1107.689 2099.036 2491.272 2510.576

E(p6-D0 + H or D) = 70.3 E(p6-D1 + H) = 67.6 E(p6-D2 + H) = 67.9E(p6-D3 + H) = 68.6

INTERMEDIATES

i1: HSiPH₃

Η	0.3346158710	1.3071373910	1.2873276285
Η	-0.5110681246	-1.0680994100	-1.6464747752
Η	-0.7511826435	1.0496812958	-1.6466848718
Η	1.1926441277	0.2065574703	-1.5238173146
Р	-0.0716334957	0.0504225850	-0.9237323998
Si	-0.2740962049	-0.0844353621	1.3677073329

Frequencies

 $\begin{array}{c} 223.672\\ 350.070\\ 381.904\\ 412.732\\ 781.812\\ 1041.909\\ 1115.893\\ 1136.296\\ 2034.700\\ 2446.816\\ 2457.653\\ 2514.620\\ \end{array}$

E(D0) = -100.0 E(D1) = -101.3 E(D2) = -103.1 E(D3) = -102.9E(D4) = -102.9

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.01663792

i0: HSi--PH₃

Н	-0.2207176500	-1.0879123200	-1.4049713600
Н	-0.5270953800	0.8087543200	-0.6284608800
Н	0.3257130400	1.4815076600	1.4744752600
Η	0.9728553900	-0.3951979000	0.1361483900
Р	0.5765628800	0.0516615300	-1.1712374700
Si	-0.6416853700	0.3142478800	1.4272713700

65.563 162.192 265.057 343.548 655.493 951.852 1111.291 1145.468 2063.710 2164.877 2233.850 2469.394 E(D0) = -18.8E(D1) = -21.6E(D2) = -21.0E(D3) = -20.1

E(D3) = -20.1E(D4) = -21.0

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.02006214

i2a: H₂SiPH₂

Η	0.2322097806	1.4529579954	1.6383452670
Η	-0.3663830305	-1.0669679681	-1.3928271458
Η	0.9018850414	-0.8587118925	1.6516647502
Η	-0.9422517275	0.9186247838	-1.4036824490
Р	0.2383633547	0.1861629433	-1.1517416352
Si	-0.0570152987	0.1130627381	1.0779890428

Frequencies

158.843
452.987
479.077
524.340
735.192
787.855
922.332
1100.928
2229.478
2254.672
2444.957
2452.098

E(D0) = -188.8 E(D1) = -190.8 E(D2) = -191.4 E(D3) = -190.8E(D4) = -191.4

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.02023650

i2b: H₂SiPH₂

Η	0.1338658964	-0.9466892928	1.8996698792
Η	-0.3130016947	1.1458116300	-1.4667113207
Н	-1.0377578416	-0.7772577458	-1.3428092833
Н	-1.6633234274	0.5949848243	1.4175627660
Р	0.1831179323	-0.1160371165	-1.0719851084
Si	-0.2617914450	0.2364493307	1.1085603972

Frequencies

137.610 450.852 483.843 501.866 716.100 760.843 934.107 1109.132 2239.574 2270.104 2427.695 2447.905

$$\begin{split} E(D0) &= -182.8\\ E(D1) &= -184.8\\ E(D2) &= -185.5\\ E(D3) &= -185.4\\ E(D4) &= -184.8 \end{split}$$

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.01739167

 $i3: H_3SiPH$

Η	-0.3013147031	-0.9474965529	-1.3684279205
Н	0.5340240535	1.5449456987	1.5679876137
Η	0.6604821264	-0.8565987306	1.6063138122

Η	-1.4604096322	0.2297308095	1.2882594831
Р	0.3243159918	0.3160765200	-1.2332608245
Si	-0.0150218964	0.3041401653	0.9899369259

182.667
457.617
479.791
497.603
774.992
912.234
954.071
959.613
2263.462
2269.295
2286.401
2421.308
$E(D0) = -21^{\circ}$

E(D0) = -219.6 E(D1) = -221.6 E(D2) = -222.1 E(D3) = -222.0E(D4) = -222.0

i1 - i2b

Η	0.0168331775	-1.1892504578	-0.3355083118
Η	-1.0048334281	-0.4486423591	-1.9778890955
Η	1.1249287940	-0.4339476203	-1.8954858551
Η	-1.4596769080	-0.0231090736	1.1206178358
Р	0.0267564651	0.0105794464	-1.1395745281
Si	0.0258881265	0.0848281160	1.4189226236

Frequencies

541.176 i 198.426 232.856 282.689 701.281 975.005 1065.753 1128.583 2049.513 2176.356 2476.796 2496.156

E(D0) = -22.1 E(D1) = -24.3 E(D2) = -24.6 E(D3) = -24.7E(D4) = -24.3

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.01940730

i0 - i2a

Н	-0.1723824028	-1.1143657162	-1.3609868317
Н	0.3971949191	1.4578915377	1.3474194612
Н	0.5615592187	-0.6190937826	0.6646156579
Η	-0.7378267824	0.6417214905	-0.4533966436
Р	0.5271429607	0.0779968446	-1.0630759217
Si	-0.5688797935	0.3009782260	1.2851721080

515.550 i 288.231 427.394 583.110 755.240 880.743 918.911 1071.453 1693.013 1825.981 2111.154 2439.220 E(D0) = -7.1E(D1) = -9.8E(D2) = -9.1E(D3) = -7.8E(D4) = -9.2

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.02892678

i0 - p3

Η	0.7275997068	-1.2144188668	-1.1018111002
Н	1.0112920026	0.8536085281	-1.0294771555
Н	-1.0990574823	0.1089545229	0.2413591515
Н	-1.4731732757	0.1426544327	1.3030615658
Р	-0.0630600773	-0.0508083659	-1.1193356540
Si	0.0815103598	-0.2053271331	1.4251096524

Frequencies

998.805 i
43.488
348.668
553.210
648.894
732.376
984.163
1101.437
1590.970
1852.366
2467.970
2479.443

E(D0) = 27.6E(D1) = 25.0E(D2) = 25.0E(D3) = 27.2E(D4) = 26.3

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.01681629

i1 - p2

Н	-0.0138822567	-1.0327211646	-1.7898175468
Н	-0.1956700193	0.9730578755	-2.2839367388
Η	-0.3427142281	1.3128166536	1.2858147122
Η	0.6127105699	0.8252693528	-1.7608683835
Р	-0.5596622933	0.0475566723	-1.0696468315
Si	0.5139711989	0.0955576078	0.9993145187

Frequencies

1428.736 i 119.525 277.838 355.557 439.752 743.793 958.465 1101.711 1777.668 2062.327 2075.241 2469.805

 $\begin{array}{l} E(D0) = 96.7 \\ E(D1) = 93.8 \\ E(D2) = 95.7 \\ E(D3) = 95.3 \\ E(D4) = 95.9 \end{array}$

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.02154789

i2a - i2b

Н	0.1408185900	-0.9652959430	1.5949575143
Н	0.3499864137	-0.8329306674	-1.3657210360
Н	0.9227927644	1.3099511155	1.6790249708

Η	-1.3604016051	0.3043140607	-1.3700060328
Р	0.0215151553	0.5289542876	-1.1860803694
Si	-0.0679031983	0.4001357466	1.0675727831

150.038 i
451.438
510.287
553.368
698.323
729.668
940.135
1115.217
2243.905
2268.524
2443.374
2446.924

E(D0) = -182.2 E(D1) = -184.1 E(D2) = -184.8 E(D3) = -184.2E(D4) = -184.8

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.01837309

i2a - i3

Н	-0.3342100316	-0.9816230126	-1.0890664759
Н	0.5605347799	1.4360489798	1.8447635822
Н	0.6663665545	-0.8558426732	0.7079834391
Н	-1.6878522547	0.6356350603	1.1625836179
Р	0.7640169723	-0.1274159810	-0.8269330937
Si	-0.2267800805	0.4839955368	1.0514780203

Frequencies

1445.637 i 346.344 498.309 501.255 551.246 748.335 905.434 1015.433 1642.487 2267.827 2320.969 2424.336

$$\begin{split} E(D0) &= -90.9\\ E(D1) &= -93.4\\ E(D2) &= -93.1\\ E(D3) &= -91.5\\ E(D4) &= -92.9 \end{split}$$

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.01522820

i2a - p3

Η	0.1048208286	-0.9998535632	-1.2555396499
Н	0.6545253087	-0.4461577903	1.2952361275
Η	0.7833390160	0.5949529722	1.8539443776
Η	-1.0705619963	0.6676831500	-1.6329417764
Р	0.1517394517	0.3830555125	-0.9893675136
Si	-0.6170544887	0.5454483188	1.1484162649

Frequencies

1403.630 i 230.092
402.169 444.750
571.317
703.479 832.641
1129.195
1/15./8/ 1853.683
2455.253
2460.367
E(D0) = -3.1
E(D1) = -5.7 E(D2) = -3.7
E(D3) = -3.9
E(D4) = -5.9

i2b - p2

Н	0.0603433409	1.8977366268	1.5085071270
Н	0.4000579791	0.2264085464	-0.7553408027
Н	0.6569368656	0.3597348461	3.0298580031
Н	0.7835931699	1.3309179803	1.1009053281
Р	1.0840780817	-0.4289792237	0.2983833112
Si	-0.3290584372	0.3729512241	1.9022180334

Frequencies

1499.640 i 382.487 430.318 508.712 675.278 859.690 887.717 976.210 1697.951 1852.900 2157.872 2415.519 E(D0) = -4.7 E(D1) = -6.3

E(D1) = -6.3E(D2) = -7.0E(D3) = -6.9E(D4) = -5.6

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.02690564

i2b - p5

Н	0.2238705892	-0.8133340815	2.1384972465
Н	-0.4937855766	1.1000369091	-1.1589742827
Н	-1.3518532140	0.9710977795	1.6249305791
Н	-1.4581401494	-1.2741385052	-2.3243320337
Р	0.4140785673	0.0612784878	-0.8349267179
Si	-0.2930607965	0.0923210402	1.0990925386

Frequencies

242.977 i 90.899 146.379 472.083 537.015 623.200 626.913 760.761 970.321 2286.650 2310.622 2422.215 E(D0) = 12.2 E(D1) = 10.0 E(D2) = 9.8

E(D3) = 10.1E(D4) = 15.5

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.01855560

i2b - p1

Η	-0.6532098109	-1.0631809401	1.8712419984
Н	1.2023231232	0.4974388882	1.6972188973
Н	-1.5050586512	0.7673970916	-1.1788386229
Н	-1.7525373534	-0.0059865894	-1.1876095433
Р	0.0356433058	-0.2637190293	-1.1475042154
Si	0.2465365310	-0.3420985726	0.9538441958

Frequencies

961.101 i 284.033 361.766 435.137 528.768 582.025 642.245 965.857 1060.753 2273.017 2288.756 3314.957 E(D0) = 40.7E(D1) = 38.7E(D2) = 38.6E(D3) = 39.6E(D4) = 39.4 i3 - p4

Η	-0.6325818133	-0.5779627247	-1.6018708969
Н	0.6656507097	1.0319319747	1.7537786407
Н	0.8076072997	-0.0463381507	1.5964728927
Н	-1.3209168179	-0.2653322206	1.4553260651
Р	0.6189110510	-0.1752825334	-1.0724914908
Si	-0.3965944891	0.6237815647	0.7195938791

Frequencies

1301.207 i 207.647 348.385 445.449 516.681 737.953 801.205 995.386 1719.391 2075.839 2254.492 2415.817

E(D0) = -1.6 E(D1) = -3.6 E(D2) = -3.0 E(D3) = -2.4E(D4) = -3.7

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.02150631

i3 - p1

Н	0.4330776560	1.2826406431	-0.2927386661
Н	1.3942062807	1.2828398669	-0.5188724503
Н	1.4224912636	-0.9660453482	-1.0949024631
Н	1.9548001513	-0.2140787387	1.1652228708
Р	-1.1362681435	0.1896115687	0.4405579331
Si	0.9408561220	-0.2373448717	0.0939853057

1578.973 i 323.348 523.130 661.817 712.549 902.525 933.089 1037.291 1699.858 1812.284 2263.087 2281.881 E(D0) = 88.3E(D1) = 85.6E(D2) = 85.1E(D3) = 83.9E(D4) = 83.9

CCSD(T)-F12/cc-pVQZ-F12 - T1 diagnostic: 0.01840769

24