Supporting Information for

Identification of Glycolaldehyde Enol (HOHC=CHOH) in Interstellar Analog Ices

N. Fabian Kleimeier^{1,2**}, André K. Eckhardt^{3***}, Ralf I. Kaiser^{1,2*}

¹Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI 96822, USA

²W.M. Keck Laboratory in Astrochemistry, University of Hawaii at Mānoa, Honolulu, HI 96822, USA

³Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Correspondence:

ralfk@hawaii.edu
nfk@hawaii.edu
***ake05@mit.edu

Error determination of computed ionization energies

As the identification of different isomers in our studies focusses on the ionization energy of each isomer, we performed additional ionization energy computations at the same level of theory for multiple oxygencontaining complex organic molecules as benchmarks (Table S8). Error bounds were determined by subtracting the calculated ionization energy from the error boundaries of the experimentally determined and hence known values for each molecule. Afterwards, the average difference to the lower and upper boundary as well as their standard deviation were calculated. Finally, the standard deviation was subtracted from or added to the average difference for the lower and upper boundary, respectively. This conservative analysis yielded errors of -0.06/+0.11 eV, which allows us to distinguish all isomers of interest in this study based on their calculated and/or experimentally determined ionization energy.

CO-CH₃OH ratio determination

To quantify the ratio of the ice constituents, methanol and carbon monoxide ices of known thicknesses were prepared and IR spectra were taken to determine the absorption coefficient. This absorption coefficient was then used along with a modified Lambert-Beer law to determine the column densities of the ice constituents. The CO stretching and CH₃ rocking mode (1040 cm⁻¹; 1027 cm⁻¹, combined absorption coefficient $A = 1.6 \times 10^{-18}$ cm molecule⁻¹), the CH₃ rocking mode at 1129 cm⁻¹ ($A = 2.1 \times 10^{-19}$ cm molecule⁻¹), and the CH deformation and OH bending mode at 1460 cm⁻¹ ($A = 1.1 \times 10^{-18}$ cm molecule⁻¹) of methanol were used for the determination of the column density of methanol along with the CO stretching mode of carbon monoxide at 2136 cm⁻¹ ($A = 1.2 \times 10^{-18}$ cm molecule⁻¹) to determine its column density. For all binary ices in this study, this analysis yielded a carbon monoxide to methanol ratio of 1:1.2 ± 0.2. The uncertainty was determined by the standard deviation of the column densities determined by individual IR modes and the standard deviation of the ratio across all ices prepared.

Figure S1: IR spectra of pure methanol ice before (black lines) and after irradiation (red lines). Spectra are slightly offset to highlight differences. Red labels indicate newly formed molecules.

Figure S2: IR spectra of methanol-carbon monoxide ice before (black lines) and after irradiation (red lines). Spectra are slightly offset to highlight differences. Red labels indicate newly formed molecules.

Figure S3: Temperature-dependent time-of-flight mass spectra of pure methanol ice (left) and methanol – carbon monoxide ice (right) after electron irradiation recorded at 8.05 eV.

Figure S4: Reaction pathways inferred from isotopically labelled methanol-OD. Thick arrows designate the pathways considered relevant for the formation of 1,2-ethenediol.

Figure S5: IR spectra of methanol-OD before (black lines) and after irradiation (red lines). Red labels indicate newly formed molecules. Modes are numbered according to their order in regular methanol.

Figure S6: Desorption profile of m/z = 60 (C₂H₄O₂) in irradiated ethylene glycol ((CH₂OH)₂) recorded at a photon energy of 8.50 eV. The resulting ion signal can only be due to 1,2-ethenediol.

Figure S7. Reaction pathways inferred from isotopically labelled methanol-¹³C¹⁸O. The dashed arrows define the overall process excluding reactive radical intermediates.

Structure	Name	Point group	Electroni c state	Rel. energy in kJ mol ⁻¹	Dipole moment <i>µ</i> in Debye
e de la companya de l	<i>E-anti-anti-</i> 1,2-ethenediol	<i>C</i> ₂	¹ A	18	1.28
	E-syn-anti-1,2-ethenediol	C_1	¹ A	17	2.36
i i i	<i>E-syn-syn-</i> 1,2-ethenediol	C_2	^{1}A	15	0.00
	Z-anti-anti-1,2-ethenediol	$C_{2\mathrm{v}}$	$^{1}A_{1}$	15	2.13
	Z-syn-anti-1,2-ethenediol	C_1	$^{1}A_{1}$	0	2.25

Table S1: Computed relative energies and dipole moments for 1,2-ethenediol conformers at B3LYP/cc-pVTZ level of theory.

Parameter	CH ₃ OH	CH ₃ OH	I - CO	
irradiation current, I (nA)	30 ± 2	30	± 2	
initial kinetic energy of the electrons, E _{init}	5 keV	5 k	eV	
total number of electrons	$(6.7 \pm 0.3) \times 10^{14}$	(6.7 ± 0.1)	.3)×10 ¹⁴	
average penetration depth, l* (nm)	260 ± 30	280	± 30	
density of the ice, ρ (g cm ⁻³)	1.020	1.0	23	
average kinetic energy of transmitted	0	()	
electrons, E _{trans} [*] (keV)				
average kinetic energy of backscattered	3.2 ± 0.3	3.3 ± 0.3		
electrons, E_{bs}^{*} (keV)				
fraction of transmitted electrons, f _{trans} *	0	0		
fraction of backscattered electrons, f _{bs} *	0.33 ± 0.03	0.35 ± 0.03		
irradiated area, A (cm ²)	1.0 ± 0.1	1.0 =	= 0.1	
molecule	CH ₃ OH	CH ₃ OH	СО	
total # molecules processed	$(5.0\pm0.7)\times10^{17}$	$(3.1 \pm 0.5) \times 10^{17}$	$(2.5 \pm 0.3) \times 10^{17}$	
dose per molecule (eV)	5.3 ± 0.8	4.9 ± 0.8	4.2 ± 0.7	

Table S2: Data used to calculate irradiation doses.

Notes: *CASINO output values

	Photon energy (eV) Wavelength (nm)	9.75 127.2	8.82 140.6	8.50 145.9	8.05 154.0
ω_1 Nd:YAG (ω_1) Dye laser (ω_1) Dye (ω_1) ^{<i>a</i>}	Wavelength (nm) Wavelength (nm) Wavelength (nm)	202.316 532 606.948 Rh mix	222.566 355 445.132 C 450	202.316 532 606.948 Rh mix	249.628 355 499.256 C 503
ω_2 Nd:YAG (ω_2) Dye laser (ω_2) Dye (ω_2) ^{<i>a</i>}	Wavelength (nm) Wavelength (nm) Wavelength (nm)	495 355 495 C 503	534 355 534 C 540 A	330 532 660 DCM	658 532 658 DCM

Table S3: Wavelengths and dyes used to generate the different photon energies of the photoionization source.

Notes: " Rh mix: Rhodamine 610 + Rhodamine 640, C 450/503/540 A: Coumarin 450/503/540 A

CH	3OH	CH	3OD	Assignment	Mode
Before	After	Before	After		
irradiation	irradiation	irradiation	irradiation		
cm ⁻¹	cm^{-1}	cm^{-1}	cm^{-1}		
4398		4407		$v_2/v_9 + v_4/v_6/v_{10}$ (CH ₃ OH)	Combination
4275		4276		v_2/v_9+v_4 (CH ₃ OH)	Combination
4020		4015		$v_2/v_9+v_8(CH_3OH)$	Combination
3989		3984		$v_2/v_9 + v_8$ (CH ₃ OH)	Combination
3600-		2600-			OU Church line
3020		2100		$V_1(CH_3OH)$	OH Stretching
			2253	unknown	
2985		2985		ν ₂ (CH ₃ OH)	CH ₃ asym. str.
2950		2950		ν ₉ (CH ₃ OH)	CH ₃ symm. str.
2925				$v_4 + v_5 / v_4 + v_{10} / v_5 + v_{10} / 2 v_4 / 2 v_{10} / 2 v_5$	Combination/
				(CH ₃ OH)	Overtone
2825		2825		ν ₃ (CH ₃ OH)	CH ₃ sym. Str.
2604		2605		$v_4 + v_{11}/v_7 + v_4/v_6/v_{10}$ (CH ₃ OH)	Combination
2526				$v_6 + v_{11}(CH_3OH)$	Combination
	2340			$v_3(CO_2)$	C=O stretch
2235				$2v_{11}/2v_7$ (CH ₃ OH)	Overtone
		2185		$v_7 + v_6 (CH_3OD)$	Overtone
	2134			$v_1(CO)$	CO stretch
2040		2040		2v ₈ (CH ₃ OH)	Overtone
		1895		2v ₆ (CH ₃ OD)	Overtone
	1844			v ₃ (HCO)	C=O stretch
	1750			$v_{14}(HOCH_2CHO)$	
	1726		1721	v ₂ (H ₂ CO)	C=O stretch
	1718		1716	$v_{14}(HC(O)OCH_3)$	C=O stretch
	1700			$2v_6(HOCH_2CHO)$	
	1508			$v_3(H_2CO)$	CH ₂ scissor
	1499			$v_3(H_2CO)$	CH ₂ scissor
1477		1469		v_4 (CH ₃ OH)	CH ₃ asym.
					bend
1461		1461		ν ₁₀ (CH ₃ OH)	CH ₃ asym.
					bend
1445		1445		v ₅ (CH ₃ OH)	CH ₃ symm
					bend
1420		940		v ₆ (CH ₃ OH)	O-H bend
	1302		1301	$v_4(CH_4)$	deformation
		1233			CH ₃ rocking
	1192		1190	$v_6(CH_2OH)$	CO stretch
	1177			$v_6(H_2CO)$	CH ₂ wagging
1135		1160		ν ₇ (CH ₃ OH)	CH ₃ rocking
1123		1120		ν ₇ (CH ₃ OH)	CH ₃ rocking
	1092		1092	ν ₂ (HCO)	bending
1040		1040		v ₁₁ (CH ₃ OH)	CH ₃ rocking

Table S4: Infrared absorptions in methanol and methanol-OD ices before and after irradiation.

1026		1027	ν ₈ (CH ₃ OH)	CO stretch
	667		$v_2(CO_2)$	C=O bend

CH ₃ O	H-CO	CH ₃ OH	[- ¹³ C ¹⁸ O	Assignment	Mode
Before	After	Before	After		
irradiation	irradiation	irradiation	irradiation		
cm^{-1}	cm^{-1}	cm^{-1}	cm^{-1}		
4400		4402		$v_2/v_9+v_4/v_6/v_{10}$ (CH ₃ OH)	Combination
4277		4278		v_2/v_9+v_4 (CH ₃ OH)	Combination
		4049			
4017		4016		v_2/v_9+v_8 (CH ₃ OH)	Combination
3986		3984		v_2/v_9+v_8 (CH ₃ OH)	Combination
3600-		3600-			OH Stratahing
3020		3200			OII Succining
2985		2985		$v_2(CH_3OH)$	CH ₃ asym. str.
2953		2954		v ₉ (CH ₃ OH)	CH ₃ sym. str.
2925		2922		$v_4 + v_5 / v_4 + v_{10} / v_5 + v_{10} / 2 v_4 / 2 v_{10} / 2 v_5$	Combination/
				(CH ₃ OH)	Overtone
2827		2829		v ₃ (CH ₃ OH)	CH ₃ sym. Str.
		2615		$v_4 + v_{11}/v_7 + v_4/v_6/v_{10}$ (CH ₃ OH)	Combination
2604		2591		$v_4 + v_{11}/v_7 + v_4/v_6/v_{10}$ (CH ₃ OH)	Combination
2523		2522		$v_6 + v_{11}(CH_3OH)$	Combination
			2361	$v_3(CO_2)$	C=O stretch
	2340		2340	$v_3(CO_2)$	C=O stretch
			2275	$v_3(^{13}CO_2)$	C=O stretch
			2258	$v_3({}^{13}C{}^{16}O{}^{18}O)$	C=O stretch
			2239	$v_3(^{13}C^{18}O_2)$	C=O stretch
2235				$2v_{11}/2v_7$ (CH ₃ OH)	Overtone
2136			2136	$v_1(CO)$	CO stretch
	2107			unknown	
2088		2088		$v_1({}^{13}CO/C{}^{18}O)$	CO stretch
		2038		$v_1(^{13}C^{18}O)$	CO stretch
2044				$2v_8(CH_3OH)$	Overtone
	1843			v ₃ (HCO)	C=O stretch
	1750			$v_{14}(HOCH_2CHO)$	
	1726		1721	$v_2(H_2CO)$	C=O stretch
	1718		1712	$v_{14}(HC(O)OCH_3)$	C=O stretch
	1700			$2v_6(HOCH_2CHO)$	
	1504		1507	$v_3(H_2CO)$	CH ₂ scissor
	1499		1499	$v_3(H_2CO)$	CH ₂ scissor
1475		1475		$v_{4}(CH_{2}OH)$	CH_{2} asym.
				(4(0113011)	bend
1461		1461		v_{10} (CH ₃ OH)	CH ₃ asym.
					bend
1445		1445		v ₅ (CH ₃ OH)	CH ₃ sym. bend
1421		1421		$v_6(CH_3OH)$	O-H bend
	1302		1304	v_3 (CH ₄)	Deg. str.
	1211				COH deform.

Table S5: Infrared absorptions in methanol – carbon monoxide and methanol – carbon monoxide- $^{13}C^{18}O$ ices before and after irradiation.

	1193		1192	v_6 (CH ₂ OH)	CO stretch
	1177		1177	v_6 (H ₂ CO)	CH ₂ wagging
1158		1161		ν ₇ (CH ₃ OH)	CH ₃ rocking
1126		1125		ν ₇ (CH ₃ OH)	CH ₃ rocking
1110		1110		$v_7(CH_3OH)$	CH3 rocking
	1092			v ₂ (HCO)	bending
1040		1040		v ₁₁ (CH ₃ OH)	CH3 rocking
1027		1027		v_8 (CH ₃ OH)	CO stretch
	667		667	$v_2(CO_2)$	C=O bend

E-anti-anti		E-syn-anti		E-syn-syn	
Frequency	Intensity	Frequency	Intensity	Frequency	Intensity
in cm ⁻¹		in cm ⁻¹		in cm ⁻¹	
155.9	98.4	230.8	128.1	226.2	122.1
243.3	150.6	285.4	25.8	277.4	0.0
326.1	15.3	321.2	17.9	315.1	34.1
328.5	29.4	391.8	69.7	367.0	68.0
574.0	2.2	570.1	8.0	566.7	0.0
801.5	3.3	787.1	11.5	784.2	0.0
913.9	56.6	932.1	62.2	907.5	83.8
1109.7	0.2	1102.4	92.4	1082.9	0.0
1166.9	382.1	1171.3	262.5	1152.1	368.7
1216.3	71.3	1225.2	30.6	1233.4	7.8
1278.8	1.1	1316.9	3.5	1333.2	0.0
1345.8	0.0	1335.2	18.0	1366.7	0.0
1400.8	13.3	1407.7	39.7	1424.5	99.9
1779.7	0.3	1753.7	11.2	1747.7	0.0
3183.2	26.4	3142.3	30.1	3203.5	27.3
3187.6	0.0	3233.6	5.3	3204.0	0.0
3868.4	122.3	3830.4	34.4	3835.4	70.3
3870.0	16.3				

Table S6. Infrared frequencies and intensities of 1,2-ethenediol conformers at CCSD(T)/cc-pWCVTZ level of theory

Z-anti-anti		Z-syn-anti		
Frequency	Intensity	Frequency	Intensity	
in cm ⁻¹		in cm ⁻¹		
80.9	0.0	221.1	78.4	
93.7	196.0	257.9	60.0	
240.0	3.7	471.9	55.8	
524.4	0.0	549.0	74.5	
713.1	78.8	725.6	37.7	
728.9	33.8	766.5	28.1	
826.2	0.0	874.4	9.1	
1024.5	10.1	1032.9	39.9	
1131.1	135.4	1122.5	146.8	
1230.8	127.7	1214.2	30.7	
1315.9	86.2	1275.0	110.3	
1326.7	92.8	1380.8	2.7	
1454.0	28.2	1439.6	55.2	
1799.6	20.5	1753.3	51.2	
3201.5	0.9	3218.1	4.5	
3225.4	18.9	3253.8	9.9	
3889.6	156.6	3789.0	49.9	

Structure	Name	<i>IE</i> _{calc} in eV	<i>IE</i> _{exp} in eV	Electronic state	Relative energy in kJ mol ⁻¹
	anti-acetic acid	10.65	10.65 ±	¹ A'	0
de g	syn-acetic acid	10.52	0.021	¹ A'	21
\rightarrow	syn, syn-1,1-ethenediol	8.68		$^{1}A_{1}$	117
	syn, anti-1,1-ethenediol	8.58		¹ A'	112
$\mathbf{\mathbf{\mathcal{H}}}$	anti, anti-1,1-ethenediol	8.59		^{1}A	125
~~~~	anti-methyl formate	10.68	10.0251	¹ A'	93
-	syn-methyl formate	10.83	10.835 ¹	¹ A'	73
54	syn, syn-glycolaldehyde	10.06		¹ A'	113
	<i>syn, anti-</i> glycolaldehyde	9.84	9.95	¹ A'	134
and the	<i>anti, anti-</i> glycolaldehyde	9.91	$\pm 0.05^{2}$	¹ A'	126
and you	<i>anti, gauche-</i> glycolaldehyde	9.90		$^{1}A$	127
A A A A A A A A A A A A A A A A A A A	<i>E-anti-anti-</i> 1,2- ethenediol	8.16		$^{1}A$	167
	<i>E-syn-anti</i> -1,2- ethenediol	8.30		$^{1}A$	166
the second se	<i>E-syn-syn-</i> 1,2- ethenediol	8.41		$^{1}A$	165
	Z-anti-anti-1,2- ethenediol	8.21		$^{1}A_{1}$	162
$\sim$	Z-syn-anti-1,2- ethenediol	8.37		$^{1}A$	147
Å	Oxiran-2-ol	8.93		$^{1}\mathrm{A}$	195
0=0=0	1,3-Dioxetane	10.08		$^{2}B_{1u}$	235

**Table S7:** Computed adiabatic ionization energies and relative energies for  $C_2H_4O_2$  isomers at CCSD(T)/CBS//B3LYP/cc-pVTZ level of theory + zero-point vibrational energy.

Structure	Name	Experimental adiabatic ionization energy in eV	Lowest Computed adiabatic ionization energy in eV	Difference to lower bound	Differenc e to upper bound
НО	Glycolaldehyde	9.95 ±0.05 ²	9.84	0.06	0.16
ОН	Acetic Acid	$10.65 \pm 0.02$ ¹	10.52	0.11	0.15
H O	Methyl Formate	10.835 ¹	10.68	0.155	0.155
O	Acetone	$9.703 \pm 0.006^{-1}$	9.71	-0.013	-0.001
<u>0</u>	Propanal	$9.96 \pm 0.01^{-1}$	9.97	-0.02	0.00
	Propylene oxide	$10.22 \pm 0.02^{-3}$	10.24	-0.04	0.00
ОН	Prop-1-en-2-ol	$8.67 \pm 0.05$ ⁴	8.71	-0.09	0.01
ОН	2-Propen-1-ol	$9.67 \pm 0.03^{-1}$	9.65	-0.01	0.05
HO	(E)-1-Propenol	$8.64 \pm 0.02$ ⁵	8.61	0.01	0.05
HO	(Z)-1-Propenol	$8.70 \pm 0.03$ ⁵	8.63	0.04	0.10
—он	Methanol	$10.84\pm0.01$	10.86	-0.03	-0.01
co	Propadienone	$9.12\pm0.05$	9.15	-0.08	0.02
=0	Formaldehyde	$10.88\pm0.01$	10.89	-0.02	0.00
0=C=	Ketene	$9.617 \pm 0.003$	9.58	0.034	0.040
	Acetaldehyde	$10.229 \pm 0.0007$	10.24	-0.0117	-0.0103
			Average difference	0.006	0.048
			Std. deviation	0.066	0.063
			Error bounds	-0.06	0.11

**Table S8:** Error analysis of computed ionization energies for COMs containing one and two oxygen atoms; adiabatic ionization energies were computed at CCSD(T)/CBS//B3LYP/cc-pVTZ level of theory + zero-point vibrational energy.

## Cartesian Coordinates for Selected Structures of C₂H₄O₂

B3LYP/cc-pVTZ optimized geometry (distances in Å), electronic energies (in hartree), zero-point vibrational energies (ZPVE), extrapolated CCSD(T)/CBS energies (in hartree) and adiabatic ionization energies (IE) at CCSD(T)/CBS//B3LYP/cc-pVTZ level of theory.

*cis* Acetic acid cation  $(C_s)$ 

С	-1.012317	-0.964938	0.000000
С	0.064451	0.082674	0.000000
Н	-2.006868	-0.521206	0.000000
Н	-0.879238	-1.565654	0.905304
Н	-0.879238	-1.565654	-0.905304
0	-0.373776	1.254641	0.000000
0	1.327467	-0.121447	0.000000
Н	1.576888	-1.063412	0.000000

E = -228.7951578E[CCSD(T)/CBS] = -228.4591383 $ZPVE = 157.0305 \text{ kJ mol}^{-1}$ 

*cis* Acetic acid  $(C_s)$ 

С	1.384403	-0.444093	0.000000
С	-0.020669	0.115577	0.000000
Η	2.097845	0.373595	0.000000
Η	1.547860	-1.065592	-0.882491
Η	1.547860	-1.065592	0.882491
0	-0.293502	1.280081	0.000000
0	-1.016092	-0.815392	0.000000
Η	-0.647118	-1.705775	0.000000

E = -229.1725686E[CCSD(T)/CBS] = -228.8472353 ZPVE = 161.1038 kJ mol⁻¹

*trans* Acetic acid cation  $(C_s)$ 

С	-1.081166	-0.903862	0.000000
С	0.045594	0.071434	0.000000
Н	-2.051782	-0.410721	0.000000
Н	-0.965779	-1.515243	0.901193
Н	-0.965779	-1.515243	-0.901193

0	-0.266434	1.282335	0.000000
0	1.263657	-0.338800	0.000000
Η	1.939045	0.369124	0.000000

E = -228.7985722E[CCSD(T)/CBS] = -228.4616873 ZPVE = 156.0637 kJ mol⁻¹

trans Acetic acid  $(C_s)$ 

С	1.423315	-0.312362	0.000000
С	-0.019649	0.106963	0.000000
Н	2.057643	0.567904	0.000000
Н	1.631074	-0.924037	-0.877888
Н	1.631074	-0.924037	0.877888
0	-0.427736	1.238677	0.000000
0	-0.850028	-0.965037	0.000000
Н	-1.753960	-0.617026	0.000000

E = -229.1811770E[CCSD(T)/CBS] = -228.8554091 $ZPVE = 161.7909 \text{ kJ mol}^{-1}$ 

*cis*, *cis* 1,1-Ethenediol cation  $(C_{2v})$ 

~			
C	0.000000	0.000000	0.025454
С	0.000000	0.000000	1.443455
Н	0.000000	-0.942538	1.969724
Н	0.000000	0.942538	1.969724
0	0.000000	1.146808	-0.577470
Н	0.000000	1.133094	-1.549871
0	0.000000	-1.146808	-0.577470
Н	0.000000	-1.133094	-1.549871

E = -228.8255200 E[CCSD(T)/CBS] = -228.4916277 ZPVE = 159.9339 kJ mol-1

*cis*, *cis* 1,1-Ethenediol ( $C_2$ )

С	0.000000	0.000000	-0.079487
С	0.000000	0.000000	-1.404595
Н	-0.931416	0.055195	-1.942827
Н	0.931416	-0.055195	-1.942827

0	1.128211	-0.212864	0.661238
Η	1.132941	0.402815	1.404760
0	-1.128211	0.212864	0.661238
Η	-1.132941	-0.402815	1.404760

E = -229.1326146E[CCSD(T)/CBS] = -228.8072804 $ZPVE = 160.0441 \text{ kJ mol}^{-1}$ 

*cis*, *trans* 1,1-Ethenediol cation ( $C_s$ )

С	-0.014571	0.005326	0.000000
С	-0.391208	1.375179	0.000000
Η	0.382768	2.128613	0.000000
Η	-1.432608	1.663026	0.000000
0	-0.840287	-0.993688	0.000000
Η	-1.780303	-0.747631	0.000000
0	1.242361	-0.276385	0.000000
Η	1.426254	-1.235319	0.000000

E = -228.8304016E[CCSD(T)/CBS] = -228.4968440 $ZPVE = 160.6893 \text{ kJ mol}^{-1}$ 

cis, trans 1,1-Ethenediol ( $C_s$ )

С	0.000000	0.023323	-0.077490
С	0.000000	-0.005160	-1.408088
Н	0.000000	0.915395	-1.966530
Н	0.000000	-0.942638	-1.940970
0	0.000000	-1.057705	0.752872
Н	0.000000	-1.863932	0.227096
0	0.000000	1.165684	0.639497
Н	0.000000	0.933426	1.575090

E = -229.1373598 E[CCSD(T)/CBS] = -228.8118010 $ZPVE = 159.5802 \text{ kJ mol}^{-1}$ 

*trans, trans* 1,1-Ethenediol cation  $(C_{2v})$ 

С	0.000000	0.000000	-0.019064
С	0.000000	0.000000	1.406857
Η	0.000000	0.930956	1.956399

Н	0.000000	-0.930956	1.956399
0	0.000000	-1.071954	-0.736537
Н	0.000000	-1.898631	-0.227486
0	0.000000	1.071954	-0.736537
Η	0.000000	1.898631	-0.227486

E = -228.8243955

E[CCSD(T)/CBS] = -228.4913406ZPVE = 160.4209 kJ mol⁻¹

*trans, trans* 1,1-Ethenediol ( $C_{2v}$ )

С	0.000000	0.000000	-0.071731
С	0.000000	0.000000	-1.408140
Н	0.000000	0.924602	-1.963761
Н	0.000000	-0.924602	-1.963761
0	0.000000	-1.089183	0.725564
Н	0.000000	-1.876169	0.172050
0	0.000000	1.089183	0.725564
Н	0.000000	1.876169	0.172050

E = -229.1356581

E[CCSD(T)/CBS] = -228.8102922ZPVE = 160.4708 kJ mol⁻¹

Glycolaldehyde #01 cation ( $C_1$ )

0	-1.321417	0.597486	0.176457
С	-0.059575	0.918359	-0.038775
Н	-1.812700	0.355296	-0.626507
С	1.038962	-0.495502	0.058623
0	0.634232	-1.577856	0.117324
Н	0.362529	1.481896	0.794557
Н	0.220975	1.260443	-1.038753
Η	2.079147	-0.121421	0.046908

E = -228.7783297 E[CCSD(T)/CBS] = -228.4398472 $ZPVE = 153.9289 \text{ kJ mol}^{-1}$ 

Glycolaldehyde #01 ( $C_s$ )

0	-1.347777	0.557051	0.000000
С	0.000000	0.928681	0.000000

Η	-1.361244	-0.412024	0.000000
С	0.924487	-0.257086	0.000000
0	0.512154	-1.390532	0.000000
Н	0.245610	1.542549	0.878739
Η	0.245610	1.542549	-0.878739
Η	2.008081	-0.034791	0.000000

E = -229.1364389

E[CCSD(T)/CBS] = -228.8117491ZPVE = 160.0387 kJ mol⁻¹

Glycolaldehyde #02 cation ( $C_1$ )

0	-1.293701	0.875070	-0.318733
С	-0.004669	1.079178	-0.123125
Н	-1.818781	0.835904	0.498367
С	0.916406	-0.448994	0.059514
0	0.384232	-1.469662	0.177093
Н	0.304852	1.555993	0.810961
Н	0.490839	1.434410	-1.027793
Н	1.994100	-0.203714	0.037714

E = -228.7783296

E[CCSD(T)/CBS] = -228.4398495ZPVE = 153.9255 kJ mol⁻¹

Glycolaldehyde #02 ( $C_{\rm s}$ )

Ο	1.302044	-0.690422	0.000000
С	0.770533	0.608140	0.000000
Н	2.260995	-0.632407	0.000000
С	-0.737108	0.581953	0.000000
0	-1.420138	-0.402999	0.000000
Н	1.072266	1.196088	-0.881008
Н	1.072266	1.196088	0.881008
Н	-1.182560	1.601071	0.000000

$$\begin{split} & E = -229.1279011 \\ & E[CCSD(T)/CBS] = -228.8033010 \\ & ZPVE = 158.4770 \text{ kJ mol}^{-1} \end{split}$$

Glycolaldehyde #03 cation ( $C_1$ )

O -1.285865 1.187448 -0.069553

С	0.010770	0.894365	-0.159239
Η	-1.545293	1.528885	0.802634
С	0.201593	-0.844154	0.038605
0	1.118210	-1.232569	0.635639
Η	0.680692	1.312135	0.588772
Η	0.367322	0.942560	-1.192128
Н	-0.606998	-1.397301	-0.468937

E = -228.7795703E[CCSD(T)/CBS] = -228.4407168 ZPVE = 154.8563 kJ mol⁻¹

Glycolaldehyde #03 ( $C_s$ )

0	1.266366	1.879953	0.000000
С	0.780852	0.549904	0.000000
Н	2.226566	1.866725	0.000000
С	-0.732015	0.603212	0.000000
0	-1.429426	-0.375206	0.000000
Н	1.097250	-0.014804	0.885128
Н	1.097250	-0.014804	-0.885128
Н	-1.149033	1.630316	0.000000

E = -229.1305150 E[CCSD(T)/CBS] = -228.8061648 $ZPVE = 158.0194 \text{ kJ mol}^{-1}$ 

Glycolaldehyde #04 cation ( $C_1$ )

0	-1.655967	-0.296531	0.091481
С	-0.632308	0.541599	-0.065199
Н	-1.957754	-0.369893	1.012429
С	0.849516	-0.404311	-0.165399
0	1.804924	0.014665	0.343493
Η	-0.428314	1.251992	0.732655
Н	-0.590662	0.946389	-1.080413
Н	0.696324	-1.329874	-0.746137

E = -228.7795703E[CCSD(T)/CBS] = -228.4407254 ZPVE = 154.8491 kJ mol⁻¹

Glycolaldehyde #04 ( $C_1$ )

0	1.711792	0.231131	-0.003969
С	0.516542	-0.524498	-0.070449
Η	1.807441	0.591696	0.882358
С	-0.727479	0.344174	-0.124089
0	-1.834586	-0.051751	0.125366
Η	0.414279	-1.246715	0.745132
Η	0.557408	-1.092706	-1.003885
Η	-0.531156	1.394632	-0.427554

E = -229.1306407E[CCSD(T)/CBS] = -228.8058664 ZPVE = 158.7039 kJ mol⁻¹

(*E*)-*trans, trans* Ethene-1,2-diol cation ( $C_{2h}$ )

С	0.565043	-0.411377	0.000000
С	-0.565043	0.411377	0.000000
0	-1.728648	-0.167757	0.000000
Н	-2.474330	0.455484	0.000000
Η	-0.474010	1.492952	0.000000
0	1.728648	0.167757	0.000000
Η	2.474330	-0.455484	0.000000
Н	0.474010	-1.492952	0.000000

E = -228.8308768E[CCSD(T)/CBS] = -228.4927525 ZPVE = 164.3151 kJ mol⁻¹

(*E*)-*trans, trans* Ethene-1,2-diol ( $C_2$ )

С	0.546618	0.375520	-0.072170
С	-0.546618	-0.375520	-0.072170
0	-1.795742	0.198153	0.014140
Н	-2.440056	-0.395353	-0.379217
Н	-0.486695	-1.457749	-0.069631
0	1.795742	-0.198153	0.014140
Н	2.440056	0.395353	-0.379217
Η	0.486695	1.457749	-0.069631

E = -229.1164359E[CCSD(T)/CBS] = -228.7906112 ZPVE = 158.9087 kJ mol⁻¹

(*E*)-*cis, trans* Ethene-1,2-diol cation ( $C_s$ )

С	0.562695	-0.386979	0.000000
С	-0.575731	0.426942	0.000000
0	-1.730729	-0.173486	0.000000
Η	-2.490323	0.432925	0.000000
Η	-0.521130	1.511932	0.000000
0	1.782069	0.049292	0.000000
Η	1.882148	1.017626	0.000000
Η	0.469731	-1.467265	0.000000

$$\begin{split} & E = -228.8258146 \\ & E[CCSD(T)/CBS] = -228.4878997 \\ & ZPVE = 164.1639 \text{ kJ mol}^{-1} \end{split}$$

(*E*)-*cis, trans* Ethene-1,2-diol ( $C_1$ )

С	0.536830	-0.375622	0.035089
С	-0.537963	0.404615	0.015759
0	-1.805363	-0.140589	-0.053859
Н	-2.377261	0.305180	0.577977
Н	-0.464535	1.488776	-0.026431
0	1.837491	0.041868	-0.013468
Н	1.867842	1.003075	-0.071255
Н	0.452875	-1.452261	0.071581

E = -229.1171363E[CCSD(T)/CBS] = -228.7913099 ZPVE = 159.8009 kJ mol⁻¹

(*E*)-*cis*, *cis* Ethene-1,2-diol cation ( $C_2$ )

С	0.565367	0.412826	0.000000
С	-0.565367	-0.412826	0.000000
0	-0.524446	-1.709114	0.000000
Н	0.367752	-2.099730	0.000000
Η	-1.573260	-0.010024	0.000000
0	0.524446	1.709114	0.000000
Н	-0.367752	2.099730	0.000000
Η	1.573260	0.010024	0.000000

E = -228.8220855

E[CCSD(T)/CBS] = -228.4842479ZPVE = 164.2288 kJ mol⁻¹

## (*E*)-*cis*, *cis* Ethene-1,2-diol ( $C_2$ )

С	0.535588	-0.393538	0.000000
С	-0.535588	0.393538	0.000000
0	-0.531842	1.767126	0.000000
Н	0.376318	2.087396	-0.000001
Н	-1.544782	0.001982	0.000000
0	0.531842	-1.767126	0.000000
Н	-0.376318	-2.087396	-0.000001
Н	1.544782	-0.001982	0.000000

E = -229.1179891E[CCSD(T)/CBS] = -228.7918952 ZPVE = 160.0722 kJ mol⁻¹

(*Z*)-*trans, trans* Ethene-1,2-diol cation ( $C_{2v}$ )

С	0.000000	0.701558	0.598805
С	0.000000	-0.701558	0.598805
0	0.000000	-1.332423	-0.533871
Н	0.000000	-2.299833	-0.440901
Н	0.000000	-1.241982	1.538413
0	0.000000	1.332423	-0.533871
Н	0.000000	2.299833	-0.440901
Н	0.000000	1.241982	1.538413

E = -228.8302182E[CCSD(T)/CBS] = -228.4928958 ZPVE = 165.1683 kJ mol⁻¹

(*Z*)-*trans, trans* Ethene-1,2-diol ( $C_{2v}$ )

С	0.000000	0.664463	0.621475
С	0.000000	-0.664463	0.621475
0	0.000000	-1.402610	-0.534851
Н	0.000000	-2.335599	-0.311700
Н	0.000000	-1.196227	1.562811
0	0.000000	1.402610	-0.534851
Н	0.000000	2.335599	-0.311700
Н	0.000000	1.196227	1.562811

E = -229.1175585E[CCSD(T)/CBS] = -228.7924957 ZPVE = 159.4846 kJ mol⁻¹ (Z)-cis, trans Ethene-1,2-diol cation ( $C_s$ )

С	-0.702451	0.603136	0.000000
С	0.700873	0.624098	0.000000
0	1.320059	-0.524193	0.000000
Н	2.289374	-0.455608	0.000000
Н	1.249525	1.558079	0.000000
0	-1.406398	-0.480047	0.000000
Н	-0.876304	-1.299567	0.000000
Н	-1.273536	1.522636	0.000000

E = -228.8297013E[CCSD(T)/CBS] = -228.4931010 $ZPVE = 165.1353 \text{ kJ mol}^{-1}$ 

(Z)-cis, trans Ethene-1,2-diol ( $C_1$ )

С	-0.677832	0.628855	-0.006113
С	0.650200	0.655746	0.024604
0	1.350196	-0.541555	-0.008760
Н	2.136784	-0.472167	0.538569
Η	1.212465	1.578185	0.006253
0	-1.425013	-0.509633	-0.006957
Н	-0.814926	-1.257861	0.033254
Η	-1.268115	1.530816	-0.049918

E = -229.1242472 E[CCSD(T)/CBS] = -228.7993516 $ZPVE = 161.5028 \text{ kJ mol}^{-1}$ 

Methyl formate #01 cation ( $C_s$ )

С	-0.322049	-0.641116	0.000000
0	0.023000	0.561966	0.000000
С	1.463697	0.969181	0.000000
Η	1.582746	1.563796	0.898772
Η	1.582746	1.563796	-0.898772
Н	2.091024	0.082431	0.000000
0	-1.520570	-1.027292	0.000000
Η	0.385178	-1.493543	0.000000

E = -228.7632192E[CCSD(T)/CBS] = -228.4253033 ZPVE = 156.7613 kJ mol⁻¹ Methyl formate #01 ( $C_{\rm s}$ )

С	-0.357854	-0.676644	0.000000
0	0.000000	0.620530	0.000000
С	1.393737	0.939881	0.000000
Η	1.613905	1.526903	0.889587
Η	1.613905	1.526903	-0.889587
Η	2.008234	0.037411	0.000000
0	-1.495027	-1.034159	0.000000
Н	0.508874	-1.361607	0.000000

E = -229.1489027

E[CCSD(T)/CBS] = -228.8193960ZPVE = 160.5394 kJ mol⁻¹

Methyl formate  $\#02 \operatorname{cation} (C_{\rm s})$ 

С	-0.726324	0.499868	0.000000
0	0.517087	0.671541	0.000000
С	1.461909	-0.498483	0.000000
Н	1.279460	-1.069809	0.905805
Н	2.438191	-0.031936	0.000000
Н	1.279460	-1.069809	-0.905805
0	-1.329742	-0.607297	0.000000
Н	-1.391519	1.380858	0.000000

$$\begin{split} & E = -228.7649376 \\ & E[CCSD(T)/CBS] = -228.4277752 \\ & ZPVE = 156.8178 \text{ kJ mol}^{-1} \end{split}$$

Methyl formate  $\#02 (C_s)$ 

С	-0.763903	0.440753	0.000000
0	0.548851	0.702755	0.000000
С	1.416163	-0.447709	0.000000
Н	1.241385	-1.054217	0.886666
Н	2.426459	-0.051730	0.000000
Н	1.241385	-1.054217	-0.886666
0	-1.264527	-0.648895	0.000000
Η	-1.317291	1.388190	0.000000

E = -229.1561630

E[CCSD(T)/CBS] = -228.8279453

### 1,3-Dioxetane cation $(D_{2h})$

0	-0.000000	1.027455	-0.000000
С	-0.959569	-0.000000	-0.000000
С	0.959569	0.000000	-0.000000
0	0.000000	-1.027455	-0.000000
Н	1.601708	0.000000	0.901513
Η	1.601708	0.000000	-0.901513
Н	-1.601708	-0.000000	-0.901513
Н	-1.601708	-0.000000	0.901513

E = -228.7351245E[CCSD(T)/CBS] = -228.3940852

 $ZPVE = 154.0980 \text{ kJ mol}^{-1}$ 

1,3-Dioxetane  $(D_{2h})$ 

0	0.000000	0.000000	-1.035573
С	0.000000	-0.983257	-0.000000
С	-0.000000	0.983257	0.000000
0	0.000000	-0.000000	1.035573
Н	-0.901963	1.605219	0.000000
Н	0.901963	1.605219	0.000000
Н	0.901963	-1.605219	-0.000000
Н	-0.901963	-1.605219	-0.000000

E = -229.0928022E[CCSD(T)/CBS] = -228.7688123

 $ZPVE = 164.9067 \text{ kJ mol}^{-1}$ 

Oxiran-2-ol cation  $(C_s)$ 

0	0.527608	0.342942	-0.000000
С	-0.498017	-0.418009	0.000000
С	1.818337	-0.083049	-0.000000
Η	2.532888	0.720249	-0.000000
Н	2.021937	-1.143049	0.000000
0	-1.629146	0.180763	0.000000
Н	-2.393248	-0.420867	0.000000
Н	-0.400214	-1.501904	0.000000

E = -228.7891396

E[CCSD(T)/CBS] = -228.4507662ZPVE = 156.2551 kJ mol⁻¹

Oxiran-2-ol  $(C_1)$ 

0	0.761180	-0.801134	-0.253427
С	-0.212023	-0.048313	0.449567
С	0.993220	0.605920	-0.031809
Η	0.913143	1.224709	-0.918238
Η	1.803114	0.843711	0.649107
0	-1.397976	0.230345	-0.200034
Η	-1.992184	-0.521689	-0.105163
Η	-0.316887	-0.326062	1.495432

E = -229.1048487E[CCSD(T)/CBS] = -228.7812503 ZPVE = 162.5001 kJ mol⁻¹

#### **Notes and References**

- 1 Lias, S. G. "*Ionization Energy Evaluation*" *in NIST Chemistry Webbook, NIST Standard Reference Database Number 69.* (National Institute of Standards and Technology).
- Porterfield, J. P. *et al.* Pyrolysis of the Simplest Carbohydrate, Glycolaldehyde (CHO–CH2OH), and Glyoxal in a Heated Microreactor. *JPCA* **120**, 2161-2172, doi:10.1021/acs.jpca.6b00652 (2016).
- 3 Watanabe, K., Nakayama, T. & Mottl, J. Ionization potentials of some molecules. *JQSRT* **2**, 369-382, doi:https://doi.org/10.1016/0022-4073(62)90023-7 (1962).
- Iraqi, M., Pri-Bar, I. & Lifshitz, C. Electron impact ionization of unstable enols: H2C=CHOH, H2C=C(OH)-CH3 and H2C=C(OH)-C2H5. *Org. Mass Spectrom.* 21, 661-664, doi:10.1002/oms.1210211010 (1986).
- 5 Tureček, F. (E)- and (Z)-prop-1-en-1-ol: gas-phase generation and determination of heats of formation by mass spectrometry. *J. Chem. Soc., Chem. Commun.*, 1374-1375, doi:10.1039/C39840001374 (1984).