ChemPhysChem

Supporting Information

Interstellar Enolization-Acetaldehyde (CH₃CHO) and Vinyl Alcohol (H₂CCH(OH)) as a Case Study

N. Fabian Kleimeier and Ralf I. Kaiser*

Supporting Information

Absorption (cm ⁻¹)	Assignment	Approximate type of mode
3416	$2v_4$	overtone
3123	$v_4 + v_6$	combination
3001	ν_1	$v_{as}(CH_3)$
2964	ν_{11}	ν(CH ₃)
2916	ν ₂	$v_s(CH_3)$
2858	$2v_6$	overtone
2843	$2v_6$	overtone
2759	V ₃	v(CH)
2736	V ₃	v(CH)
2598	$v_4 + v_9$	combination
2466	$v_7 + v_8$	combination
2234	$v_7 + v_9$	combination
2003	$v_8 + v_9$	combination
1769	2v ₉	overtone
1726	v_4	v(CO)
1718	v_4	v(CO)
1680	v ₄ (CH ₃ ¹³ CHO)	v(¹³ CO)
1641	$v_8 + v_{10}$	combination
1546	$2v_{14}$	overtone
1430	v_{12} / v_5	$\delta(CH_3) / \delta_{as}(CH_3)$
1406	$v_9 + v_{10}$	combination
1392	ν_6	δ(CH)
1347	ν ₇	$\delta_{s}(CH_{3})$
1123	ν_8	$\gamma_r(CH_3)$
1107	v ₈ (¹³ CH ₃ CHO)	$\gamma_r(^{13}CH_3)$
886	$v_{14} + v_{15}$	combination
772	v_{14}	γ(CH)

Table S1. IR features associated with acetaldehyde in pure acetaldehyde ices.^[1]

Table S2. IR features	associated with solid	acetaldehyde-d4 in	the acetaldehy	/de-d4 ice. ^[1]

Absorption (cm ⁻¹)	Assignment	Approximate type of mode
3384	2v ₄	overtone
2472	$v_4 + v_9$	combination
2312	$2v_5$	overtone
2254	ν_1	$v_{as}(CD_3)$
2219	v_{11}	ν(CD ₃)
2180	v_5+v_7	combination
2134	ν_2	vs(CD ₃)
2104	ν_2	vs(CD ₃)
2088		
2076	$v_2/2v_{12}$ (Fermi resonance)	v(CD)/overtone
2068		
1908	$v_5 + v_9$	combination
1884	$v_8 + v_{12}$	combination
1870	$2v_8$	overtone
1709	ν_4	v(CO)
1693	$\nu_9 + \nu_8$	v(CO)
1662	v ₄ (CD ₃ ¹³ CDO)	v(¹³ CO)
1597	$v_{5} + v_{10}$	combination
1157	ν_5	v(CC)
1042	V ₁₂	δ(CD ₃)
1021	ν_6	$\delta_{as}(CD_3)$
952	V ₁₃	γ (CD)
941	ν_8	$\delta_{s}(CD_{3})$

Table S3. Detected mass-to-charge ratios in the irradiated ice and tentative assignment of molecules.

Mass-to-cha	arge ratio		
CH₃CHO	CD₃CDO	Formula	Assignment
42	44	C_2H_2O	Ketene
44	48	C_2H_4O	Vinyl alcohol
45	50	$C_2H_5O^+$	Protonated acetaldehyde
58	64	C₃H ₆ O	Acetone
70	76	C ₄ H ₆ O	?
72	80	C ₄ H ₈ O	?
86	92	$C_4H_6O_2$	2,3-Butanedione
88	96	$C_4H_8O_2$	(CH ₃ CHO) ₂
89	98	$C_4H_9O_2$	(CH ₃ CHO)H(CH ₃ CHO)
101	110	$C_5H_9O_2$	(CH ₃ CHCO)H(CH ₃ CHO)
117*	126*	$C_5H_9O_3$	(CH ₃ COCHO)H(CH ₃ CHO)
131	142	$C_6H_{11}O_3$	(CH ₃ COCOCH ₃)H(CH ₃ CHO)
132	144	$C_6H_{12}O_3$	(CH ₃ CHO) ₃
133	146	$C_6H_{13}O_3$	(CH ₃ CHO) ₃ H
145	158	$C_7H_{13}O_3$	(CH ₃ CHCO)H(CH ₃ CHO) ₂
149	162	$C_6H_{13}O_4$	(CH ₃ COOH)H(CH ₃ CHO) ₂
159	174	$C_8H_{15}O_3$	$(CH_{3}COCOCH_{3})H(C_{4}H_{8}O)$
176	192	$C_8H_{16}O_4$	(CH ₃ CHO) ₄
177	194	$C_8H_{17}O_4$	(CH₃CHO)₄H

Notes: * also detected in unirradiated acetaldehyde ices

 Table S4. Relative signals of vinyl alcohol isotopologues expected assuming only ketene hydrogenation as formation pathway compared to relative signals detected.

m/z	Molecular	Relative	Relative
	formula	signal	signal
		detected	expected
44	C_2H_4O	1	1
45	C ₂ H ₃ DO	0.83 ± 0.05	2.05
46	$C_2H_2D_2O$	0.34 ± 0.03	1.47
47	C ₂ HD ₃ O	0.57 ± 0.04	0.77
48	C_2D_4O	0.45 ± 0.03	0.36

Temperature (K) Figure S1. QMS signal of the HCO⁺ (m/z = 29, blue line) and DCO⁺ (m/z = 30, red line) fragments of CH₃CHO and CD₃CDO, respectively.

References

^[1] H. Hollenstein, H. H. Günthard, Spectrochim Acta A 1971, 27, 2027-2060.