Supporting Information for

A Crossed Molecular Beams and Computational Study on the Formation of the Astronomically Elusive Thiosilaformyl Radical (HSiS, X²A')

Shane J. Goettl^a, Zhenghai Yang^a, Srinivas Doddipatla^a, Chao He^a, Márcio O. Alves^b, Breno R. L. Galvão^{b,*}, Ralf I. Kaiser^{a,*}

^a Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA. *Corresponding Author Prof. Ralf I. Kaiser: <u>ralfk@hawaii.edu</u>

 ^b Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil
 *Corresponding Author Prof. Breno R L Galvão: <u>brenogalvao@gmail.com</u>

Figure S1. Time-of-flight (TOF) spectra taken at the center-of-mass (CM) angle of 54° corresponding to m/z = 60 (black) and m/z = 61 (red) for the reaction of atomic silicon (Si(³P_j)) with thiomethanol (CH₃SH).

Figure S2. Newton circles for the reaction of atomic silicon $(Si(^{3}P_{j}))$ with thiomethanol (CH₃SH) for the methane and methyl loss channels along with the atomic hydrogen emission pathway. Each Newton circle has a radius equal to the maximum CM recoil velocity of the heavy product. E_c and V_{CM} define the collision energy and velocity of the center of mass, respectively.

Fig. S3: Complete representation of the calculated products, intermediates, and transition states for the reaction between ground state atomic silicon and thiomethanol calculated at the CCSD(T)-F12/aug-cc-pV(T+d)Z//M06-2X/cc-pV(T+d)Z+ZPE(M06-2X/cc-pV(T+d)Z) level. Atoms are colored as follows: carbon (grey); silicon (purple); hydrogen (white); sulfur (yellow).

Decestion Deflements	\mathbf{D}_{a} to \mathbf{C}_{a} is stand (a^{-1})
Reaction Pathway	Rate Constant (s ⁻¹)
$i1 \rightarrow i2$	5.35267×10^{11}
$i2 \rightarrow i1$	2.41159×10^9
$i1 \rightarrow p3$	$1.13573 imes 10^{10}$
$i2 \rightarrow p4$	1.08041×10^{11}

 Table S1. Energy-dependent rate constants derived from RRKM calculations.

Table S2. Optimized Cartesian coordinates (Angstrom) and vibrational frequencies (cm^{-1}) for all intermediates, transition states, reactants, and products involved in the reactions of atomic silicon $(Si(^{3}P_{j}))$ with thiomethanol (CH₃SH) at the M06-2X/cc-pV(T+d)Z level.

Reagents

CH₃SH

С	-3.41176033	1.25439584	0.01449201
S	-1.60045278	1.28984702	0.02218826
Η	-3.82207370	1.90858257	0.77812487
Η	-3.78685069	0.24311264	0.14125393
Η	-3.71781158	1.62130284	-0.96190315
Η	-1.43594086	0.82071924	1.26236403

Frequencies

236.041 732.010 804.927 977.459 1101.351 1361.538 1481.980 1494.617 2741.296 3089.114 3176.547 3177.949

Products

CH₃

С	0.66410094	2.73329639	-0.00000000
Η	1.51476645	2.07351351	0.00000000
Η	0.81006140	3.79990077	0.00000000
Η	-0.33263868	2.32650924	0.00000000

Frequencies

405.863 1412.233 1412.371 3144.143 3323.125 3323.298

HSiS

S -3.5140755200 1.2168792500 0.0000000000 Si -1.5816367900 1.4356775300 0.0000000000 H -0.6953377100 0.2232032100 0.0000000000

Frequencies

580.731 724.768 2077.406

HSSi

Si -6.0232639300 -0.4069621600 -0.0000000000 S -4.1160321200 0.4944951200 -0.0000000000 H -3.3237240300 -0.5920630100 0.0000000000

Frequencies

518.854 675.323 2651.064

CH₃S

С	-3.4018590482	1.2522998432	0.0201163997
S	-1.6137606348	1.2888270144	0.0216427185
Η	-3.8166823624	1.9128767148	0.7775576358
Η	-3.7817406913	0.2403778458	0.1372127499
Η	-3.7171155122	1.6208224788	-0.9593757732

Frequencies

633.337 743.794 869.142 1337.308 1387.002 1478.986 3053.926 3129.352 3153.624

CH₃Si

C -3.4070510575 1.2427420340 0.0450102109 Si -1.5211101617 1.3041677327 -0.0129868177 H -3.8689972994 1.9082363329 0.7758044799 H -3.8345657120 0.2432227412 0.1380087186 H -3.6994340183 1.6168350561 -0.9486828610

Frequencies

502.819 621.844 693.285 1242.984 1363.488 1444.282 2996.870 3086.121 3124.474

SiH

Si -1.4471899572 1.5322851907 0.1340533318 H -0.7836439977 0.1846410261 -0.0654881498

Frequencies

2060.131

SH

S -4.0806275850 0.5482255800 0.1585125495 H -3.3925807519 -0.5980317347 0.2394575334

Frequencies

2727.726

H₃CSiS

Si -1.2922444017 2.3447081197 -0.9116030215

С	0.3530548631	2.5341783821	-0.0094074653
S	-3.0086234334	2.7190429318	-0.0681228236
Η	0.3988512280	3.5383974752	0.4129005472
Η	1.2045581107	2.3649898997	-0.6636071035
Η	0.3712253429	1.8132848461	0.8093761265

28.456 200.454 601.640 648.002 746.390 799.790 1233.466 1434.758 1446.680 3061.142 3146.941 3174.034

H₃CSSi

С	-1.8311634692	0.2262129791	0.2401343951
Si	1.2847895101	0.7324340425	0.3716915006
Η	-1.5104170895	0.1778200986	1.2776627094
Η	-2.2712699269	-0.7213070719	-0.0593963275
S	-0.3974226854	0.5682218748	-0.8452514948
Η	-2.5591441481	1.0228578845	0.1107956769

Frequencies

91.185 216.923 537.685 690.499 941.809 974.020 1339.821 1471.766 1480.365 3078.111 3175.993 3176.393

H₂CSiSH

Si	-1.0445620252	1.7530735297	-0.9807337388
С	0.2413969917	2.6328136230	0.0017374659
S	-2.7987231043	2.7995066603	-0.2966019905
Η	0.0884899935	3.0436510667	0.9955430419
Η	1.2783655866	2.6460468081	-0.3191422582
Η	-2.2362652823	3.7285089322	0.4877366297

210.468 262.133 357.417 484.335 628.457 678.220 714.842 778.981 1403.638 2712.465 3121.218 3213.255

H₂CSSiH

S	-0.9567026038	1.9757610036	-0.9608665563
С	0.2829191708	2.6345584994	-0.0153133982
Si	-2.8773553868	2.7267400473	-0.3864600967
Η	0.0655471300	3.3405076414	0.7707964359
Η	1.2967443122	2.3282052985	-0.2208568881
Η	-2.2824504625	3.5978281299	0.7012396535

Frequencies

254.375 265.798 374.468 492.900 549.573 789.068 818.251 947.315 1412.589 2073.627 3170.620 3300.879

Intermediates

i1: H₃CSHSi

S	0.7535961169	-0.1476115477	-0.5173300205
С	-0.9562773727	0.1198347642	0.0329041416
Η	-1.3128232823	0.9755020966	-0.5344925859
Η	-0.9596138790	0.3617587404	1.0920844411
Si	1.9349681829	1.6840828295	0.3313963364
Η	-1.5628324519	-0.7556180383	-0.1850482300
Η	1.0196708961	-1.1677568348	0.3166149375

Frequencies

159.376 171.928 291.118 531.924 700.609 790.534 977.839 1086.982 1349.374 1466.167 1473.789 2646.142 3081.432 3184.048 3186.853

i2: H₃CSSiH

C -1.7971468245 0.1665999445 0.2578597815 Si 1.0906267164 1.2724759431 0.2543602640 H -1.6161079716 -0.1763601524 1.2722259916 H 1.1548885191 2.6988159624 -0.1525096098 H -2.5411101317 -0.4716157687 -0.2141035755 S -0.2721496092 0.0210067579 -0.7395683877 H -2.1487399884 1.1941330831 0.2648623859

Frequencies

108.135 198.960 294.803 528.155 631.713 702.876 966.094 974.731 1345.001 1475.652 1479.910 2182.496 3082.302 3172.539 3182.960

i3: H₃CSSiH

С	-3.3827386431	2.6624157636	0.1516770214
Si	-1.5718081372	3.1137043610	0.3834937814
S	-0.3722024960	1.5751023630	-0.4828241569
Η	-3.6118401673	1.7181076914	0.6427274332
Η	-3.6188634230	2.5729736188	-0.9086696440
Η	-4.0112174870	3.4377209013	0.5896835057
Η	-1.2275596465	4.3439553010	-0.3760779407

Frequencies

136.780 163.770 488.990 531.621 599.910 695.913 789.148 870.727 1264.975 1451.055 1457.622 2195.953 3064.181 3148.814 3156.815

i4: H₃CSiHS

Si -1.2458788518 2.3231009761 -0.9781839766 C 0.3538990350 2.5314614087 0.0048513910

S	-3.0996226581	2.7404236958	-0.0325673291
Η	-3.3744517095	1.5110983456	0.4304737402
Η	0.4127997271	3.5397667691	0.4129170196
Η	1.2047557930	2.3710300734	-0.6561591758
Η	0.4008686644	1.8088187314	0.8186783307

93.421 177.183 272.428 489.717 687.808 723.740 785.220 795.956 1250.409 1447.944 1451.854 2677.464 3061.699 3148.885 3154.707

Transition states

i1 - i2

S	0.7481780063	-0.0822070340	-0.8525894498
С	-0.8492021348	0.1082606578	-0.0125276989
Η	-1.3462752312	0.9896038306	-0.4089109885
Η	-0.6724768830	0.2433247565	1.0530675469
Si	2.0423494127	1.5548214095	0.2135083332
Η	-1.4506121282	-0.7801925322	-0.1864736118
Η	1.6013989781	-0.1464216981	0.4181428489

Frequencies

623.663 i 113.981 182.596 409.484 679.399 717.074 974.354 982.807 1348.403 1465.433 1471.919 1484.081 3074.159 3165.467 3179.486

i2 - i4

C -1.5301634034 -0.0552895284 0.1285954464 Si 0.4902640488 0.1658458420 -1.0038804565 S 0.4293183823 -0.3786115151 1.0086322597 H -1.7958080293 0.9942789921 0.1373633933 H -1.9530861682 -0.5639735863 0.9868776101 H -1.8758576940 -0.5600036796 -0.7703438002 H 0.2012321238 -0.8413371546 -2.0560213327

Frequencies

1153.918 i 152.351 359.306 395.345 582.590 650.456 780.006 819.176 1242.002 1439.121 1481.042 2172.933 3089.882 3168.599 3221.493

i3 – i4

Si	-0.5242511057	0.0746288215 -0.4976388744
С	0.6087369755	0.0071929366 -2.0042215073
S	0.2827566741	0.0215922105 1.4399347849
Η	-0.2481535695	-1.1916203276 0.5579910894
Η	1.0341165470	0.9930479366 -2.1904494097
Η	0.0460899998	-0.3045415080 -2.8826754995
Η	1.4132532842	-0.7029903520 -1.8188214101

1208.268 i
103.067
181.806
443.086
537.088
698.386
776.514
787.555
1248.775
1445.029
1452.001
1674.260
3064.349
3151.854
3162.567

i1 – p3

С	-0.7194774720	0.0267300161	2.2910587295
Η	-1.4761812181	-0.7324624505	2.1639155760
Η	0.0736284538	-0.1903587240	2.9921544956
Η	-1.0432497535	1.0542980628	2.2151031599
S	0.4742360782	-0.2377614662	0.1966917599
Η	1.1973049861	0.8172951249	0.6078055140
Si	-0.4122244745	0.5119183768	-1.5954806648

Frequencies

394.822 i 75.918 95.622 419.633 460.670 537.167 583.356 693.979 895.558 1422.864 1428.581 2651.294 3116.926 3280.378 3286.219

i2 – p1

С	0.6523314477	-0.0111790027	-2.4168348591
Si	0.1285160059	0.1084339313	1.4128391872
Η	-0.1111659228	-0.3531614760	-3.0965671594
Η	1.0680026049	-0.7146165498	2.2376055716
Η	1.5053219784	-0.6454547594	-2.2407367647
S	-0.6689207316	-0.6085433644	-0.2293891769
Η	0.7526867975	1.0488562510	-2.2522248587

Frequencies

257.689 i 46.325 103.239 297.489 423.840 439.544 633.878 675.983 759.672 1420.035 1421.084 2110.037 3137.621 3309.675 3313.448

i1 – p4

С	-0.8514941561	0.0057960073	1.6196638831
Η	-0.4884599523	0.5996148041	2.4551046565
Η	-1.7071132737	0.4906773293	1.1566936162
Η	-1.1225604185	-0.9889408194	1.9622120958
S	0.5072723247	-0.1526533034	0.4052042039
Η	1.5385644267	1.4823897055	1.4598152027
Si	-0.2779194008	0.3602617665	-1.4713452883

Frequencies

458.001 i 76.782 185.691 218.219 336.252 522.070 691.170 950.418 978.393 1340.534 1472.017 1477.165 3078.206 3175.065 3180.812

i3 – p2

Si	-0.5429894632	-0.0155967501	-0.4888451895
С	0.5194410958	-0.0170592525	-2.0445820662
S	0.2068322020	0.1225332353	1.3113741480
Η	0.2881308659	-2.0150159796	2.3472828756
Η	1.1873447863	0.8438089250	-2.0115142810
Η	-0.0801524271	0.0100821807	-2.9510387368
Η	1.1229344874	-0.9262028526	-2.0344329433

Frequencies

389.096 i 33.377 110.409 177.238 204.162 603.703 662.319 745.716 799.239 1236.102 1435.082 1446.453 3061.168 3147.114 3173.541