Supporting Information

Catalytic Effects of Zeolite Socony Mobil-5 (ZSM-5) on the Oxidation of Acoustically Levitated exo -Tetrahydrodicyclopentadiene (JP-10) Droplets

Sahan D. Perera, ^a Stephen J. Brotton, ^a Haylie Shinsato, ^a Ralf I. Kaiser^{a,*}

^a Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, United States

Corresponding Author: ralfk@hawaii.edu

Yuyeol Choi,^b Kyungsu Na^{b,*}

^b Department of Chemistry, Chonnam National University, Buk-gu, Gwangju, South Korea Corresponding Author: <u>kyungsu_na@chonnam.ac.kr</u>

Figure S1. UV-vis reflectance spectral comparison between the droplet of zeolite-JP-10, zeolitealuminum-JP-10, and pure JP-10.

Figure S2. UV-Vis reflectance spectral comparison between the droplet of zeolite-span 80-JP-10, zeolite-aluminum-span 80-JP-10, and span 80-JP-10.

Figure S3. FTIR transmission spectrum following ignition of a JP-10 droplet containing zeolite. The rovibrational peaks/bands of the products and unreacted JP-10 are labelled (a)–(k) and assigned in Table S3. The total fit (red line) and individual peak fits peaks (green lines) are shown.

Figure S4. FTIR transmission spectrum following ignition of a JP-10 droplet containing zeolite and aluminum NPs. The rovibrational peaks/bands of the products and unreacted JP-10 are labelled (a)–(k) and assigned in Table S4. The total fit (red line) and individual peak fits peaks (green lines) are shown.

Figure S5. FTIR transmission spectrum following ignition of a JP-10 droplet containing zeolite, aluminum NPs, and span 80. The rovibrational peaks/bands of the products and unreacted JP-10 are labelled (a)–(k) and assigned in Table S5. The total fit (red line) and individual peak fits peaks (green lines) are shown.

Molecule	Formula	Mass	Structure	Ref.
Hydrogen	H ₂	2	н—н	10,15,16,17,22, 25,26
Methyl	CH ₃	15	CH ₃ •	10,15,26
Methane	CH ₄	16	CH ₄	10,15-19, 22,24, 26
Acetylene	C ₂ H ₂	26		7,10,14,15,22,26
Ethylene	C ₂ H ₄	28		7,10,14-19,22, 24-26
Ethyl	C ₂ H ₅	29	<u> </u>	10,15
Ethane	C_2H_6	30		10,16-19,22
Propargyl	C ₃ H ₃	39	·	10,15
Methylacetylene	C ₃ H ₄	40		7,10,14,22
Allene	C ₃ H ₄	40		7,10,14,22,24,26
Allyl	C ₃ H ₅	41	<i></i> .	10,15
Propene	C ₃ H ₆	42		7,10,15-19,22, 24-26
Propane	C ₃ H ₈	44		3,17,18,19,22
Diacetylene	C ₄ H ₂	50		7,10
1,2,3-Butatriene	C ₄ H ₄	52		10
Vinylacetylene	C_4H_4	52	=	7,10,15
1-Butyne	C_4H_6	54		7,15
1,3-Butadiene	C ₄ H ₆	54		7,10,18,22,24,26
1,2-Butadiene	C_4H_6	54		7
1-Butene	C_4H_8	56		7,10,18,22,26
2-Butene	C ₄ H ₈	56		7,10,18,22
<i>i</i> -Butene	C_4H_8	56		18,22
<i>n</i> -Butane	C ₄ H ₁₀	56	\sim	3,17
<i>i</i> -Butane	C ₄ H ₁₀	56		22
Ethynylallene	C_5H_4	64	C	10

Table S1. Thermal decomposition products reported in the preceding experimental studies on JP-10.

Cyclopentadienyl	C ₅ H ₅	65		10,15
Cyclopentadiene	C ₅ H ₆	66		7,10,14-16,18-20, 24-26
3-Penten-1-yne	C ₅ H ₆	66		7
Cyclopentene	C ₅ H ₈	68		7,10,16-20,22, 25,26
1,4-Pentadiene	C ₅ H ₈	68		7
1,3-Pentadiene	C ₅ H ₈	68		10,15
2-Methyl-1,3-butadiene	C ₅ H ₈	68		22
Cyclopentane	C ₅ H ₁₀	70	\square	10,17,19,25
1-Pentene	C ₅ H ₁₀	70		22
2-Methyl-1-butene	C ₅ H ₁₀	70		22
Fulvene	C ₆ H ₆	78		10,22
Benzene	C ₆ H ₆	78		1,3,10,14,16,18, 19,20,22,24-26
1-Methylcyclopentadiene	C ₆ H ₈	80		7,22
2-Methylcyclopentadiene	C ₆ H ₈	80		22
3-Methylene-cyclopentene	C ₆ H ₈	80		7

1,3-Cyclohexadiene	C ₆ H ₈	80		10,26
1,4-Cyclohexadiene	C ₆ H ₈	80		10,22
1,5-Hexadiene	C ₆ H ₁₀	82		16
1,3-Hexadiene	C ₆ H ₁₀	82		22,26
1-Methylcyclopentene	C ₆ H ₁₀	82	\bigcirc	3

Cyclohexene	C6H10	82		10,23,26
Fulvenallenyl	C7H5	89	i i i i i i i i i i i i i i i i i i i	10
Fulvenallene	C7H6	90		10
5-Methylene-1,3-cyclohexadiene	C7H8	92		10
Methylcyclopentane	C6H10	84	\bigcirc	3
Benzyl	C7H7	91	Ċ.	15
1-Ethynyl-cyclopentene	C7H8	92		19,20
3-Ethynyl-cyclopentene	C7H8	92		19,22
Toluene	C7H8	92		1,3,7,10,15-20, 24-26

3-Methylidenecyclohexa-1,4-diene	C7H8	92		22
1,3,5-Cycloheptatriene	C7H8	92	\bigcirc	7
2-Propenylidene-cyclobutene	C7H8	92		7
1,2-Dimethylcyclopentadiene	C7H10	94		23
1,3-Bis(methylene)cyclopentane	C7H10	94		20
3-Ethenyl-cyclopentene	C7H10	94		7
1,3-Cycloheptadiene	C7H10	94	\bigcirc	7,25
Bicyclo(4.1.0)hept-2-ene	C7H10	94	\bigcirc	7,20
2-Norbornene	C7H10	94	\bigcirc	22,25
1-Methylcyclohexa-1,3-diene	C7H10	94		22
1-Methylcyclohexa-2,4-diene	C7H10	94		22
Ethenylcyclopentene	C7H10	94		22
Ethylcyclopentene	C7H12	96		3
Ethylidenecyclopentane	C7H12	96		3

Phenylacetylene	C8H6	102		7,10,15
Benzocyclobutene	C8H6	102		10
o-Xylylene	C8H8	104		10
Styrene	C8H8	104		7,10,22,24
Cyclooctatetraene	C8H8	104		25
1,3,5-Cyclooctatriene	C8H10	106		10
1-Ethenyl-3-methylene-cyclopentene	C8H10	106		7
Ethylbenzene	C8H10	106		3,7,15,22,24,25
<i>p</i> -Xylene	C8H10	106		22,25
o-Xylene	C8H10	106		3,7,10,22,25
Tricyclo[3.2.1.0(2,4)]oct-6-ene	C8H10	106		22
1,2,3,3a,4,6a-Hexahydropentalene	C8H12	108	$\langle \rangle$	3,7,19,20
Bicyclo[3.3.0]oct-1(5)-ene	C8H12	108		22

1,4-Cyclooctadiene	C8H12	108		25
cis-Octahydropentalene	C8H14	110		3
Propylcyclopentane	C8H16	112	$\sum $	3
Indene	СэН8	116		7,10,15,22,24-26
Indane	C9H10	118		7,10
Propenyl benzene	C9H10	118		7,22
1-Ethenyl-2-methylbenzene	C9H10	118		22
Propylbenzene	C9H12	120		22
1,2,4-Trimethylbenzene	C9H12	120		22
1,3,5,7,9-Decapentayne	C10H2	122		15
3-Methylcyclooctene	C9H16	124		3
Naphthalene	C10H8	128		1,10,7,20,22, 24-26
Benzofulvene	C10H8	128		22

1-Methylindene	C10H10	130		22
2-Methylindene	C10H10	130		20,22
3-Methylindene	C10H10	130		22
Dicyclopentadiene	C10H10	130		20,25
2,3-Dihydro-1-methyl-1H-indene	C10H12	132		17
5,6-Dihydrodicyclopentadiene (exo- TCD4e)	C10H12	132	$\langle \rangle$	20,22,25
2,3-Dihydro-4-methyl-1H-Indene	C10H12	132		20
1,2,3,4-Tetrahydronaphthalene	C10H12	132		20,22
3-Butenylbenzene	C10H12	132		22
(1-Methyl-1-propenyl)-Benzene	C10H12	132		20
4-Ethyl-3-ethylidene-cyclohexene	C10H16	136		7
4-Methyl-2,3,4,5,6,7-hexahydro-1H- indene	C10H16	136		17,25

3-Cyclopentylcyclopentene	C10H16	136	$\bigcirc \frown \bigcirc$	7,16,19
1-Cyclopentylcyclopentene	C10H16	136	$\bigcirc \qquad \bigcirc \qquad$	17,20
Bicyclopentylidene	C10H16	136	$\bigcirc = \bigcirc$	17
Adamantane	C10H16	136	Ð	17,20,22
1,2-Diethenyl-cyclohexane	C10H16	136		7
exo-Tetrahydrodicyclopentadiene	C10H16	136	$\langle \rangle$	1,3,7,10, 14-20, 22,23,24-26
4-Methyl-1-(1-methyethenyl) cyclohexene	C10H16	136	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	20
Cyclopentylcyclopentane	C10H18	138	$\bigcirc \frown \bigcirc$	17
2,6,6-Trimethyl- bicyclo(3.1.1)heptane	C10H18	138	t	7
trans-Decalin	C10H18	138	$\bigcirc \bigcirc$	17
1-Methylnaphthalene	C11H10	142		22
2-Methylnaphthalene	C11H10	142		22
Acenaphthylene	C12H8	152		10,22

Acenaphthene	C12H10	154	22
2-Ethenylnaphthalene	C12H10	154	22
Biphenyl	C12H10	154	10,22
Fluorene	C13H10	166	22
3-Methyl-1H-fluorene	C14H12	180	22
1-Methyl-1H-fluorene	C14H12	180	22
9-Methyl-1H-fluorene	C14H12	180	22
1H-Phenalene	C13H10	166	22
Phenanthrene	C14H10	178	22
Anthracene	C14H10	178	22
9,10-Dihydro-anthracene	C14H12	180	22

Table S2.Catalytic decomposition products reported in the preceding experimental studies on JP-10 over HZSM-5 zeolite.

Molecule	Formula	Mass	Structure	Ref.
Methane	CH4	16	CH ₄	34,35
Ethane	C2H6	30	—	34,35
Ethene	C ₂ H ₄	28		34,35
Propene	C3H6	42		34,35
Propane	C3H8	44	\land	34,35
Butane	C4H10	58	\sim	35
Cyclopentane	C5H10	70	\bigcirc	34
Pentane	C5H12	72	\sim	35
Benzene	C6H6	78		34,35
Toluene	C7H8	92		34,35
o-xylene	C8H10	106		35
m-xylene	C8H10	106		35
p-xylene	C8H10	106		35
Ethylbenzene	C8H10	106		35
Indene	С9Н8	116		35
1-ethyl-2-methylbenzene	C9H12	120		34,35

Naphthalene	C10H8	128		34
1-Butylbenzene	C10H14	134		34
Methyl naphthalene	C11H10	142		34
<i>exo-</i> Tetrahydrodicyclopentadiene	C10H16	136	$\langle \rangle$	34

Band	Peak or band wavenumber ^a (cm ⁻¹)	Molecule	Ref. band (cm ⁻¹)	Number (symmetry)	vibrational mode ^b
а	3756	H ₂ O	3756°	3(b ₁)	$v_{as}(H_2O)$
b	3714	CO_2	3714.8 ^d	$1(\sigma_g{}^{\scriptscriptstyle +})+3(\sigma_u{}^{\scriptscriptstyle +})$	combination band
с	3657	H ₂ O	3657°	1(a ₁)	v(H ₂ O)
d	3612	CO ₂	3612.8 ^d	$1(\sigma_g{}^+)+3(\sigma_u{}^+)$	combination band
e	2956	$C_{10}H_{16}$	2942°	68	v(CH)
f	2929	$C_{10}H_{16}$	2913 ^e	62	v(CH ₂)
g	2879	$C_{10}H_{16}$	2865 ^e	57	v(CH)
h	2349	CO_2	2349.1 ^d	$3 (\sigma_{u}^{+})$	$v_{as}(CO_2)$
	2360	CO_2	$2300-2380^{\rm f}$		$v_{as}(CO_2)$
i	2279	$^{13}C^{16}O_2$	2283°	$3 (\sigma_u^{+)}$	$v_{as}(CO_2)$
j	1600	H ₂ O	1595°	2(a ₁)	δ(OH)
	1455	$C_{10}H_{16}$	1456 ^e	54	scissoring (CH ₂)
	1467	$C_{10}H_{16}$	1468 ^e	55	scissoring (CH ₂)
k	668	CO ₂	667.4 ^d	$2(\pi_u)$	δ(CO ₂)
	649	$^{13}C^{16}O_2$	649.0°	$2(\pi_u)$	δ(CO ₂)
	619, 653, 678, 717	CO_2	620 -710 ^f	$2(\pi_u)$	$\delta(\mathrm{CO}_2)$

Table S3. Vibrational mode assignments for the bands in the FTIR transmission spectrum of JP-10 droplet containing zeolite.

^a Spectral resolution of 4 cm⁻¹.

 b v denotes stretch; bend; and as, antisymmetric.

^c Ref. (61).

^d Ref. (66).

^e Ref. (47).

^fRef. (67).

Table S4. Vibrational mode assignments for the bands in the FTIR transmission spectrum of JP-10 droplet containing zeolite and aluminum NPs.

Peak or band	Peak or band wavenumber ^a (cm ⁻¹)	Molecule	Ref. band (cm ⁻¹)	Number (symmetry)	vibrational mode ^b
а	3755	H ₂ O	3756°	3(b ₁)	$\nu_{as}(H_2O)$
b	3714	CO_2	3714.8 ^d	$1(\sigma_g{}^+)+3(\sigma_u{}^+)$	combination band
С	3656	H ₂ O	3657°	1(a ₁)	v(H ₂ O)
d	3612	CO_2	3612.8 ^d	$1(\sigma_g^{+})+3(\sigma_u^{+})$	combination band
е	2956	$C_{10}H_{16}$	2942 ^e	68	v(CH)
f	2929	$C_{10}H_{16}$	2913 ^e	62	ν(CH ₂)
g	2879	$C_{10}H_{16}$	2865 ^e	57	ν(CH)
h	2349	CO_2	2349.1 ^d	$3 (\sigma_{u}^{+})$	$v_{as}(CO_2)$
	2357	CO_2	$2300-2380^{\rm f}$		$v_{as}(CO_2)$
i	2278	$^{13}C^{16}O_2$	2283°	$3 (\sigma_u^{+)}$	$v_{as}(CO_2)$
j	1600	H ₂ O	1595°	2(a ₁)	δ(OH)
	1455	$C_{10}H_{16}$	1456 ^e	54	scissoring (CH ₂)
	1467	$C_{10}H_{16}$	1468 ^e	55	scissoring (CH ₂)
k	668	CO_2	667.4 ^d	$2(\pi_u)$	$\delta(CO_2)$
	649	$^{13}C^{16}O_2$	649.0 ^c	$2(\pi_u)$	δ(CO ₂)
	617, 654, 678, 719	CO_2	620-710 ^f	$2(\pi_u)$	$\delta(CO_2)$

^a Spectral resolution of 4 cm⁻¹.

^b ν denotes stretch; bend; and as, antisymmetric.

^c Ref. (61).

^d Ref. (66).

^e Ref. (47).

^fRef. (67).

Band	Peak or band wavenumber ^a (cm ⁻¹)	Molecule	Ref. band (cm ⁻¹)	Number (symmetry)	vibrational mode ^b
а	3755	H ₂ O	3756°	3(b ₁)	$v_{as}(H_2O)$
b	3714	CO_2	3714.8 ^d	$1(\sigma_g{}^+)+3(\sigma_u{}^+)$	combination band
С	3656	H ₂ O	3657°	1(a ₁)	v(H ₂ O)
d	3612	CO_2	3612.8 ^d	$1(\sigma_g{}^+)+3(\sigma_u{}^+)$	combination band
е	2955	$C_{10}H_{16}$	2942 ^e	68	ν(CH)
f	2927	$C_{10}H_{16}$	2913 ^e	62	ν(CH ₂)
g	2877	$C_{10}H_{16}$	2865 ^e	57	v(CH)
h	2349	CO ₂	2349.1 ^d	$3 (\sigma_{u}^{+})$	$v_{as}(CO_2)$
	2356	CO_2	$2300 - 2380^{\mathrm{f}}$		$v_{as}(CO_2)$
i	2279	$^{13}C^{16}O_2$	2283°	$3 (\sigma_u^{+)}$	$v_{as}(CO_2)$
j	1600	H ₂ O	1595°	2(a ₁)	δ(OH)
	1455	$C_{10}H_{16}$	1456 ^e	54	scissoring (CH ₂)
	1468	$C_{10}H_{16}$	1468 ^e	55	scissoring (CH ₂)
k	667	CO_2	667.4 ^d	$2(\pi_u)$	δ(CO ₂)
	649	$^{13}C^{16}O_2$	649.0°	$2(\pi_u)$	$\delta(CO_2)$
	617, 655, 681, 719	CO_2	620-710 ^f	$2(\pi_u)$	$\delta(CO_2)$

Table S5. Vibrational mode assignments for the bands in the FTIR transmission spectrum of JP-10 droplet containing zeolite, aluminum NPs and span 80.

^a Spectral resolution of 4 cm⁻¹.

 $^{\rm b}\,\nu$ denotes stretch; bend; and as, antisymmetric.

^c Ref. (61).

^d Ref. (66).

^e Ref. (47).

^fRef. (67).

Movie M1. Optical high-speed video of the ignition of JP-10 droplet containing zeolite and span 80.

Movie M2. Optical high-speed video of the ignition of JP-10 droplet containing zeolite, aluminum NPs and span 80.