ChemPhysChem

Supporting Information

A Photoionization Reflectron Time-of-Flight Mass Spectrometric Study on the Detection of Ethynamine (HCCNH₂) and 2H-Azirine (c-H₂CCHN)

Andrew M. Turner, Sankhabrata Chandra, Ryan C. Fortenberry,* and Ralf I. Kaiser*

Figure S1: Infrared spectra for ${}^{13}C_2H_2$:NH₃ ice before (top) and after (bottom) electron irradiation of 100 nA for 60 minutes. Newly obtained peaks after electron irradiation are shown in Table S5.

Figure S2: Infrared spectra for C_2H_2 :¹⁵NH₃ ice before (top) and after (bottom) electron irradiation of 100 nA for 60 minutes. Newly obtained peaks after electron irradiation are shown in Table S6.

Figure S3: Infrared spectra for ${}^{13}C_2H_2$: ${}^{15}NH_3$ ice before (top) and after (bottom) electron irradiation of 100 nA for 60 minutes. Newly obtained peaks after electron irradiation are shown in Table S7.

Figure S4: Infrared spectra for C_2D_2 :NH₃ ice before (top) and after (bottom) electron irradiation of 100 nA for 60 minutes. Newly obtained peaks after electron irradiation are shown in Table S8.

Figure S5: Temperature-programmed desorption profiles at m/z = 40 (top, C_2H_2 :NH₃ ice), m/z = 41 (center, C_2H_2 :NH₃ ice) and m/z = 43 (bottom, ${}^{13}C_2H_2$:NH₃ ice) confirming the assignment of C_3H_4 in Figure 6. The center panel shows ${}^{13}C^{12}C_2H_4$ with natural isotopic abundance in the C_2H_2 :NH₃ ice.

Figure S6: Temperature-programmed desorption profiles at m/z = 42 (top, C_2H_2 :NH₃ ice) and m/z = 45 (bottom, ${}^{13}C_2H_2$:NH₃ ice) confirming the assignment of C_3H_6 in Figure 6.

Ice	Ice	Ice Ratio	Ice	Current	Irradiation	Dose	Dose	Photon Energy
Number	Composition		Thickness	(nA)	Time	$(eV C_2H_2)$	(eV NH ₃	(eV)
			(nm)		(s)	molecule ⁻¹)	molecule ⁻¹)	
Ι	C_2H_2/NH_3	$1:1.1\pm0.2$	1000 ± 100	100 ± 10	3600 ± 10	5.0 ± 0.8	3.5 ± 0.6	10.49
II	C_2H_2/NH_3	$1:1.2\pm0.1$	1000 ± 100	100 ± 10	3600 ± 10	5.0 ± 1.0	3.5 ± 0.6	9.80
III	C_2H_2/NH_3	$1{:}1.0\pm0.2$	1000 ± 100	100 ± 10	3600 ± 10	5.0 ± 0.8	3.5 ± 0.6	8.81
IV	$^{13}C_{2}H_{2}/NH_{3}$	$1{:}1.1\pm0.2$	1000 ± 100	100 ± 10	3600 ± 10	5.0 ± 0.8	3.5 ± 0.8	10.49
V	$C_2H_2/^{15}NH_3$	$1{:}1.1\pm0.2$	1000 ± 100	100 ± 10	3600 ± 10	5.0 ± 0.8	3.5 ± 0.8	10.49
VI	$^{13}C_{2}H_{2}/^{15}NH_{3}$	$1{:}1.1\pm0.1$	1000 ± 100	100 ± 10	3600 ± 10	5.0 ± 0.8	3.5 ± 0.6	10.49
VII	C_2D_2/NH_3	$1{:}1.1\pm0.2$	1000 ± 100	100 ± 10	3600 ± 10	5.0 ± 1.0	3.5 ± 0.6	10.49
VII	C_2D_2/NH_3	$1:1.1\pm0.2$	1000 ± 100	10 ± 1	300 ± 10	0.042 ± 0.007	0.029 ± 0.005	9.81

Table S1: Description of different ices with composition, ratio, thickness, irradiation current and time, dose per C_2H_2 and NH_3 molecule and used photon energy.

Table S2: Data applied to calculate the average irradiation dose per molecule.

Initial kinetic energy of the electrons, E _{init} (keV)	5
Density of ice (gm cm ⁻³)	0.74 ± 0.02
Thickness of ice (nm)	1000 ± 100
Average penetration depth, l_{ave} (nm)	350 ± 30
Maximum penetration depth, l _{max} (nm)	700 ± 50
Average kinetic energy of backscattered electrons, Ebs (keV)	1.1 ± 0.2
Average kinetic energy of transmitted electrons, Etrans (keV)	0
Irradiated area, A (cm ²)	1.0 ± 0.1

YAG 1	Dye 1	Dye 1	YAG 2	Dye 2	Dye 2	Gas, pressure	VUV
wavelength	wavelength		wavelength	wavelength		(Torr)	energy
(nm)	(nm)		(nm)	(nm)			(eV)
-	-	-	355	-	-	Xe, 1.3×10^{-4}	10.49
							10.47
532	606.948	Rh 610/ Rh	355	505	Coumarin	Kr, 8.0 x 10 ⁻⁵	9.80
		640 mix			503		
355	445.132	Coumarin	532	-	-	Xe, 1.4 x 10 ⁻⁴	8.81
		450					

Table S3: Parameters used to generate VUV photons.

Assignments	Positions (cm ⁻¹)	References					
Before irradiation at 5 K							
$C_{2}H_{2}(v_{5})$	746	[1]					
$NH_3(v_2)$	1077	[2]					
$C_2H_2(v_4+v_5)$	1389	[1]					
NH ₃ (v ₄)	1627	[2]					
$C_{2}H_{2}(v_{2})$	1050	[1,3-5]					
$C_2H_2(2v_4+v_5)$	1930						
$NH_3(v_1)$	3187	[2]					
$C_{2}H_{2}(v_{3})$	3239	[1]					
NH ₃ (2v ₄)	3303	[2]					
NH ₃ (v ₃)	3394	[2]					
New Pe	aks after irradiatior	n at 5 K					
δ(C=CH)	962	[1]					
δ(CH ₂)	1277	[1]					
v(C=C)aromatic	1440	[1]					
ν (C=C) aromatic	1504	[1]					
$\delta(\mathrm{NH_2})_{\mathrm{R-NH_2}}$	1394						
v(CCN)	2054	[6]					
v(C≡C)	2110	[1]					
ν(CH)	2801, 2973	[1]					

Table S4: Assignments of infrared absorptions of C_2H_2 :NH₃ ice at 5 K before and after electron irradiation.

Table S5: Assignments of infrared absorptions of ${}^{13}C_2H_2$:NH₃ ice at 5 K before and after electron irradiation.

Assignments	Positions (cm ⁻¹)	References					
Be	Before irradiation at 5 K						
$^{13}C_{2}H_{2}(v_{5})$	745	[1]					
NH ₃ (v ₂)	1075	[2]					
$^{13}C_{2}H_{2}(v_{4}+v_{5})$	1371	[1]					
NH ₃ (v ₄)	1628	[2]					
$^{13}C_{2}H_{2}(v_{2})$	1887	[1]					
$NH_3(v_1)$	3175	[2]					
$^{13}C_{2}H_{2}(v_{3})$	3231	[1]					
NH ₃ (2v ₄)	3295	[2]					
NH ₃ (v ₃)	3397	[2]					
New peaks after irradiation at 5 K							
δ(¹³ CH)	952	[1]					

Assignments	Positions (cm ⁻¹)	References				
Before irradiation at 5 K						
$C_{2}H_{2}(v_{5})$	750	[1]				
$^{15}\text{NH}_3(v_2)$	1070	[2]				
$C_2H_2(v_4+v_5)$	1374	[1]				
$^{15}\text{NH}_3(v_4)$	1626	[2]				
$C_{2}H_{2}(v_{2})$	1890	[1]				
$^{15}\text{NH}_3(v_1)$	3160	[2]				
$C_{2}H_{2}(v_{3})$	3236	[1]				
$^{15}\text{NH}_3(2v_4)$	3300	[2]				
$^{15}\text{NH}_3(v_3)$	3384	[2]				
New peaks after irradiation at 5 K						
δ(CH)	962	[1]				
v(CH)	2819	[1]				

Table S6: Assignments of infrared absorptions of C_2H_2 :¹⁵NH₃ ice at 5 K before and after electron irradiation.

Table S7: Assignments of infrared absorptions of ¹³C₂H₂:¹⁵NH₃ ice at 5 K before and after electron irradiation.

Assignments	Positions (cm ⁻¹)	References					
Bet	Before irradiation at 5 K						
$^{13}C_{2}H_{2}(v_{5})$	756	[1]					
$^{15}\text{NH}_3(v_2)$	1074	[2]					
$^{13}C_{2}H_{2}(v_{4}+v_{5})$	1371	[1]					
$^{15}\text{NH}_3(v_4)$	1627	[2]					
$^{13}C_{2}H_{2}(v_{2})$	1887	[1]					
$^{15}\text{NH}_3(v_1)$	3156	[2]					
$^{13}C_{2}H_{2}(v_{3})$	3228	[1]					
$^{15}\text{NH}_3(2\nu_4)$	3294	[2]					
$^{15}\text{NH}_3(v_3)$	3387	[2]					
New Peaks after irradiation at 5 K							
δ(¹³ CH)	961	[1]					
$v(^{13}CH_3)$	2825	[1]					

Assignments	Positions (cm ⁻¹)	References					
Before irradiation at 5 K							
$NH_3(v_2)$	1074	[2]					
NH ₃ (v ₄)	1627	[2]					
$C_2D_2(v_2)$	1727	[1]					
$C_2D_2(v_3)$	2360	[1]					
$NH_3(v_1)$	3218	[2]					
NH ₃ (2v ₄)	3302	[2]					
$NH_3(v_3)$	3392	[2]					
New Peaks after irradiation at 5 K							
v(CD ₃)	2809	[1]					

Table S8: Assignments of infrared absorptions of C_2D_2 :NH₃ ice at 5 K before and after electron irradiation.

Table S9: Calculated adiabatic ionization energies (IE) and relative energies (E_{rel}) of C_2H_3N isomers with average deviations calculated from the error limits. Combined error limits are used to obtain the corrected calculated ionization energies and 0.03 eV was subtracted to correct for the electric field effect.

Name	Computed	Experimental	Experimental	Computed IE –	Computed IE –	Corrected IE	Corrected IE with
	IE (eV)	IE (eV)	error limits	experimental	experimental	after error	electric field
			(eV)	IE (max) (eV)	IE (min) (eV)	analysis (eV)	effect (eV)
Acetonitrile	12.20	12.20 ± 0.01	12.19 - 12.21	-0.01	+0.01	12.18 - 12.25	12.15 - 12.22
Methyl	11.25	11.24 ± 0.01	11.23 - 11.25	+0.0	+0.02	11.23 - 11.30	11.20 - 11.27
Isocyanide							
Ketenimine	8.73					8.71 - 8.78	8.68 - 8.75
		-	-	-	-		
Ethynylamine	8.90					8.88 - 8.95	8.85 - 8.92
		-	-	-	-		
2H-Azirine	10.02	10.05 ± 0.03	10.02 - 10.08	-0.06	+0.0	10.00 - 10.07	9.97 - 10.04
1H-Azirine	8.33					8.31 - 8.38	8.28 - 8.35
		-	-	-	-		
				Average	Average		
				-0.02 ± 0.03	$+0.01\pm0.01$		
				Error limits	Error limits		
				-0.05 - +0.01	+0.0 - +0.02		
Combine					error limits		
				-0.05	- +0.02		

Table S10: Molecular coordinates and harmonic frequencies from quantum chemical calculations.

C ₂ H ₂ , ac	etyler	ne						
H 0.00	000	0.0000	-1.6690830)3				
C 0.00	00	0.0000	-0.6051047	'1				
C 0.00	00	0.0000	0.6051047	1				
H 0.00	000	0.0000	1.6690830	3				
Wavenu	umber	s [cm-1]	593.08	593.08	-	748.31	748.31	1994.58
Wavenu	umber	s [cm-1]	3393.94	3502.00	0			
CCH, et	hynyl	radical						
С	0.000	0000000	0.0000000	000	-0.	6750625	5630	
С	0.000	0000000	0.0000000	000	0.5	5403745	176	
Н	0.000	0000000	0.0000000	000	1.6	5049944	574	
Wavenu	umber	s [cm-1]	278.68	278.68	2	2004.20	3444.14	
NH, imi	doger	n						
N 0.00	000	0.0000	0.0000					
H 0.00	000	0.0000	1.0366866	4				
Wavenu	umber	s [cm-1]	3317.28					
NH ₂ , an	nino ra	adical						
N	0.000	0000000	0.0000000	000	-0.	0806070)955	
Н	0.000	0000000	0.8033459	298	0.5	600727	250	
н	0.000	0000000	-0.8033459	298	0.5	6007272	250	
Wavenu	umber	rs [cm-1]	1539.34	3359.58	8	3453.36	5	
C₂H₃N, :	1H-azi	rine (6)						
N	-0.08	06076258	0.0000000	000	-0.	8878302	2726	
С	0.011	6959326	-0.6417622	2321	0.4	942210	338	
С	0.011	6959326	0.6417622	321	0.4	942210	338	
н	-0.013	31455220	-1.6269428	3525	0.9	180257	742	
н	-0.013	31455220	1.6269428	525	0.9	180257	742	
Н	0.867	6974175	0.0000000	000	-1.	2770950)580	
Wavenu	umber	s [cm-1]	537.43	560.32	-	713.75	879.55	972.92
Wavenu	umber	s [cm-1]	1058.26	1145.50	0	1366.18	1724.6	5 3288.93
Wavenu	umber	s [cm-1]	3338.32	3351.3	7			
C₂H₃N, 2	2H-azi	rine (3)						
Н	0.000	0000000	1.4535830	288	-1.	1215274	1672	
С	0.000	0000000	0.6073958	417	-0.	4496674	1329	
С	0.000	0000000	0.0384991	239	0.8	3894397	266	
Ν	0.000	0000000	-0.6530257	799	-0.	5054401	L431	
Н	-0.922	28189527	-0.0378160	990	1.4	1524058	114	
Н	0.922	8189527	-0.0378160	990	1.4	1524058	114	
Wavenu	umber	rs [cm-1]	699.70	772.34	9	987.35	996.12	1039.38
Wavenu	umber	rs [cm-1]	1106.95	1265.33	3	1510.90	1684.8	3 3115.43
Wavenu	umber	s [cm-1]	3207.87	3226.3	6			

HCCNH₂, ethynamine (4)

NH2CCH CCSD(T)/AVTZ ENERGY=-132.46823705 Н -0.8315632832 0.3579402605 -1.6260192838 Ν 0.0000000000 -0.0515210672 -1.2229212807 С 0.0000000000 -0.0170034916 0.1425472155 С 0.0000000000 0.0136146471 1.3537592695 Н 0.0000000000 0.0404576969 2.4156339309 0.3579402605 Н 0.8315632832 -1.6260192838 Wavenumbers [cm-1] 494.83 651.71 332.84 380.23 684.03 Wavenumbers [cm-1] 1054.41 1214.31 1648.28 2195.58 3467.63 Wavenumbers [cm-1] 3538.94 3629.52

CH₂CNH, ketenimine (5)

Н	-0.8066589280	0.0000000	0000	-1.74456451	L32	
Ν	0.0810974039	0.0000000	0000	-1.24327705	524	
С	-0.0262057255	0.0000000	0000	-0.01494363	361	
С	-0.0006162401	0.0000000	0000	1.30218409	73	
Н	-0.0003395930	-0.936481	9812	1.84117103	48	
Н	-0.0003395930	0.9364819	9812	1.84117103	48	
Waven	umbers [cm-1]	403.53	458.64	705.78	904.08	998.00
Waven	umbers [cm-1]	1046.33	1133.09	9 1438.30	2072.79	3173.44
Waven	umbers [cm-1]	3268.71	3477.95	5		

t-HCCHNH₂ radical (7)

С	-0.0030675689	0.3953267	7209	-0.12837697	754	
Ν	0.0592287489	-0.160256	6416	1.16345991	15	
Н	-0.4764157623	0.3618109	9741	1.84264828	03	
Н	-0.1991831810	-1.137820	2522	1.18289632	10	
С	-0.0141150447	-0.267013	8529	-1.27555315	509	
Н	0.0253365116	-0.012224	1309	-2.32100842	247	
Н	0.0319528658	1.4861924	4577	-0.14262693	316	
Waven	umbers [cm-1]	331.91	461.86	560.84	712.29	797.53
Waven	umbers [cm-1]	811.48	1078.32	1218.22	1311.72	1640.72
Waven	umbers [cm-1]	1674.94	3083.72	3277.97	3534.50	3637.35

CH₂CHNH radical (8)

С	0.0000000000	0.1900867	886	-1.22778277	760	
С	0.0000000000	-0.438302	0219	0.02794465	24	
Ν	0.0000000000	0.2834542	834	1.13135325	13	
Н	0.0000000000	-0.335285	7413	1.94448653	08	
Н	0.0000000000	-1.530299	9581	0.05281198	19	
Н	0.0000000000	1.2714121	.321	-1.27865206	569	
Н	0.0000000000	-0.386982	0030	-2.14261005	566	
Waven	umbers [cm-1]	479.79	506.89	678.01	805.22	989.46
Waven	umbers [cm-1]	1038.32	1094.39	1231.99	1353.18	1452.47
Waven	umbers [cm-1]	1503.15	3078.61	. 3155.68	3266.32	3445.56

c-CH₂CHNH radical (9)

С	-0.0055477348	-0.0572990	0621	-0.85966	534138		
Ν	-0.0944996825	-0.6176742	2926	0.53382	88192		
С	0.0977429342	0.7716719	713	0.34336	62737		
Н	-0.5115079719	1.5550833	072	0.77334	64144		
Н	0.7519551896	-1.1110388	3102	0.80686	19601		
Н	0.9035965606	-0.2345015	5713	-1.42507	742130		
Н	-0.9294752891	-0.1388586	5568	-1.42102	182142		
Waven	umbers [cm-1]	714.98	764.03	865.3	0 908	8.97	995.23
Waven	umbers [cm-1]	1080.21	1106.3	3 1140	.26 1	198.29	1309.42
Waven	umbers [cm-1]	1509.41	3110.00	3193	.18 3	202.07	3483.53

Intermediate in formation of 1H-azirine from $C_2H_2 + NH$ (*)

С	-0.757935	0.403808	0	.016135					
С	-0.187052	-0.732547	0	.016089					
Н	-0.254796	-1.805979	0	.030571					
Н	-1.236250	1.355987	0	.015725					
Ν	0.843419	0.281376	-(0.145028					
Н	1.257033	0.452790	0	.775557					
Wave	enumbers [cm-1]	356.92	579.79	752.87	820.36	942.	25	1097	.94
Wave	enumbers [cm-1]	1124.95	1366.50	1769.61	3249.74		3326	.00	3396.11

TS C₂H₂+NH₂ \rightarrow 7

С	-0.0001682446	0.5974114034	-0.5653284454
Ν	-0.0000043480	-0.0923336201	1.5237504597
Н	-0.8034826225	-0.7231024220	1.4230050044
Н	0.8037022077	-0.7227690493	1.4230484091
С	0.0003483687	-0.3910953557	-1.2832429280
Н	-0.0021848199	-1.3271086290	-1.7915293197
Н	-0.0001207726	1.5975403592	-0.2008272441

TS 7 → 8

С	-0.128774	0.387026	0.000000
Ν	-1.145368	-0.373136	0.000000
Н	-2.006789	0.173176	0.000000
Н	-0.224911	1.483378	0.000000
С	1.246067	-0.130209	0.000000
Н	1.772518	-0.292805	0.929992
Н	1.772518	-0.292805	-0.929992

TS 7 → 4

С	-0.0111240548	0.0766060510	-0.1390895621
Ν	0.0608770646	-0.0911466866	1.2183307961
Н	-0.2623821402	0.7148987351	1.7351404556
Н	-0.4008271432	-0.9362039533	1.5277359929
С	0.0013012115	-0.1095646961	-1.3477876272
Н	-0.0150019652	-0.0940506497	-2.4109807699
Н	-0.0507057612	1.9747111692	-0.0640631103

TS 8 → 9

Н	-1.6284666830	0.4165723585	-0.1755034248
С	-0.6950011894	-0.1213898334	-0.0615708335
С	0.2356739285	0.0197283167	1.0145112079
Н	0.5077954937	0.9950711858	1.4050285411
Н	0.8128225880	-0.8346268579	1.3522250774
Ν	0.3490464477	0.0989217124	-0.9296508295
Н	0.9308924836	-0.7402310362	-1.0185882626

TS 8 → 5

Н	-0.9327625946	-0.0363755070	-1.6523222838
Ν	0.0063583343	0.0027461249	-1.2543790269
С	0.0107442067	-0.0015052501	-0.0200120791
С	-0.0904238767	-0.0011416771	1.3042003512
Н	-0.0993226474	0.9391361795	1.8373687634
Н	-0.0137367484	-0.9331088046	1.8461908246
Н	1.9069578066	0.0237287846	0.0971883761

TS 9 → 3

С	0.0180994931	-0.0647526135	-0.8964457947
Ν	-0.1537491691	-0.5388253409	0.5677850419
С	0.0400597565	0.7156814149	0.3267288634
Н	0.2325409206	1.6294111546	0.8655851752
Н	1.1326627739	-1.4261897073	0.9109018358
Н	0.9519319941	-0.3587775311	-1.3675598653
Н	-0.8736293881	-0.1134489470	-1.5101084512

TS 9 → 6

С	-0.1914679792	-0.4470445704	-0.6185695434
Ν	-0.0773635508	-0.1812080799	0.8829730955
С	0.0815358169	0.7668326249	-0.2850051754
Н	0.2176090191	1.8194723445	-0.4447287432
Н	0.8630098209	-0.4780250108	1.1626194446
Н	1.8687083541	-1.4096067597	-0.9637467398
Н	-0.5642613681	-1.2244245677	-1.2569152662

- [1] M. J. Abplanalp, R. I. Kaiser, Astrophys. J. 2020, 889, 3, 1-26.
- [2] Y. S. Kim, R. I. Kaiser, Astrophys. J. 2011, 729, 68-75.
- [3] R. I. Kaiser, K. Roessler, *Astrophys. J.* **1998**, *503*, 959-975.
- [4] K. D. Doney, D. Zhao, J. F. Stanton, H. Linnartz, *Phys. Chem. Chem. Phys.* **2018**, *20*, 5501-5508.
- [5] K. F. Palmer, M. E. Mickelson, K. N. Rao, J. Mol. Spec. 1972, 44, 131-144.
- [6] M. E. Jacox, D. E. Milligan, J. Am. Chem. Soc. **1963**, 85, 278-282.