

pubs.acs.org/JPCA

Gas-Phase Formation of C_5H_6 Isomers via the Crossed Molecular Beam Reaction of the Methylidyne Radical (CH; X²II) with 1,2-Butadiene (CH₃CHCCH₂; X¹A')

Published as part of The Journal of Physical Chemistry virtual special issue "Cheuk-Yiu Ng Festschrift".

Chao $\text{He},^{\perp}$ Anatoliy A. Nikolayev,^{\perp} Long Zhao, Aaron M. Thomas, Srinivas Doddipatla, Galiya R. Galimova, Valeriy N. Azyazov, Alexander M. Mebel,* and Ralf I. Kaiser*

ABSTRACT: The bimolecular gas-phase reaction of the methylidyne radical (CH; $X^2\Pi$) with 1,2-butadiene (CH₂CCHCH₃; X^1A') was investigated at a collision energy of 20.6 kJ mol⁻¹ under single collision conditions. Combining our laboratory data with high-level electronic structure calculations, we reveal that this bimolecular reaction proceeds through the barrierless addition of the methylidyne radical to the carbon–carbon double bonds of 1,2-butadiene leading to doublet C_5H_7 intermediates. These collision adducts undergo a nonstatistical unimolecular decomposition through atomic hydrogen elimination to at least the cyclic 1-vinyl-cyclopropene (**p5/p26**), 1-methyl-3-methylenecyclopropene (**p28**), and 1,2-bis(methylene)cyclopropane (**p29**) in overall exoergic reactions. The barrierless nature of this bimolecular reaction suggests that these cyclic C_5H_6 isomers might be viable targets to be searched for in cold molecular clouds like TMC-1.

1. INTRODUCTION

The understanding of the formation mechanisms of polycyclic aromatic hydrocarbons (PAHs) has attracted interest from the combustion science and astrochemistry communities predominantly due to the crucial role of PAH-like species in combustion processes and in the interstellar medium (ISM).¹⁻⁷ In deep space, spectroscopic features of PAHrelated species such as cations, (de)hydrogenated PAHs, anions, nitrogen-substituted PAHs, and possibly protonated counterparts have been inferred in the ultraviolet (200-400 nm) and the infrared (3-20 mm) regions via the diffuse interstellar bands (DIBs) and unidentified infrared (UIRs) bands.^{2,8} These spectroscopic searches propose that PAHs along with their derivatives may contribute up to 20% to the interstellar carbon budget; furthermore, PAH-like species are considered as key precursors leading eventually to the synthesis of carbonaceous nanoparticles ("interstellar dust").9 In terrestrial environments, PAHs are considered as toxic byproducts in the incomplete combustion of fossil fuel, coals, and biomass. This causes air and marine pollution eventually resulting in carcinogenic, mutagenic, and teratogenic effects.¹⁰⁻¹² Therefore, the exploration of the fundamental reaction pathways leading to a synthesis of PAHs and their precursors in extreme environments is important to better understand the carbon chemistry in terrestrial environments and deep space such as cold molecular clouds like TMC-1¹³ and the dying carbon stars like IRC+10216.14-23

Downloaded via UNIV OF HAWAII on January 16, 2021 at 02:09:00 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Resonantly stabilized free radicals (RSFRs) such as propargyl (HCCCH₂), 1,3-butadienyl (i-C₄H₅), and cyclopentadienyl $(c-C_5H_5)$ have been hypothesized to promote PAH formation in high temperature combustion flames of typically 1200–1500 K. $^{24-26}$ Considering the cyclopentadienyl $(c-C_{s}H_{s})$ radical, extensive experimental and kinetic modeling studies reveal that the reactions of $c-C_{s}H_{s}$ with methyl (CH₃), acetylene (C_2H_2) , propargyl (HCCCH₂), and c-C₅H₅ radical could lead to benzene (C_6H_6) , the tropyl radical $(c-C_7H_7)$, styrene (C_8H_8), and naphthalene ($C_{10}H_8$), respectively.²⁷⁻ This interest resulted in the exploration of the reaction of the *c*- C_5H_5 radical with methyl (CH₃) computationally on the C_6H_8 potential energy surface (PES) utilizing quantum chemical BAC-MP4 and BAC-MP2 methods²⁷ as well as the ab initio G2M(rcc,MP2) and B3LYP/6-311G(d,p) levels of theory by Moskaleva et al.²⁸ These studies proposed that the methylcyclopentadiene intermediate (C5H5CH3) might be formed via addition of the methyl (CH₃) radical to the ring system eventually followed by two consecutive atomic hydrogen eliminations to form fulvene, which then undergoes

Received:September 25, 2020Revised:December 18, 2020Published:January 5, 2021

Scheme 1. Geometries of Selected C_5H_6 Isomers along with Their Point Groups and Energies (kJ mol⁻¹) Relative to the Lowest Energy Isomer Cyclopentadiene^{*a*}

^aIsomers detected under single collision conditions in crossed molecular beam experiments are denoted in bold.

hydrogen atom-assisted isomerization to benzene (C₆H₆).^{27,28} Fascella et al. proposed that a rapid reaction pathway may proceed between $c-C_5H_5$ and acetylene (C_2H_2) leading to the tropyl radical $(c-C_7H_7)$;²⁹ the existence of this radical was confirmed in time- and isomer-resolved experiments in the acetylene - c-C₅H₅ system below 1000 K.³⁰ Indene (C₉H₈) along with atomic hydrogen might be formed in a successive reaction of the tropyl radical $(c-C_7H_7)$ with acetylene (C₂H₂).²⁹ Sharma and co-workers developed a chemical kinetics model for the hexadiene-doped methane flames and explored the C₈H₈ PES using quantum chemistry (CBS-QB3) calculations considering the recombination of c-C₅H₅ and propargyl (HCCCH₂) leading to styrene (C_8H_8) .³¹ The simplest PAH-naphthalene (C10H8)-was proposed to be synthesized through the self-recombination of $c-C_5H_5$ radicals in hydrocarbon flames along with hydrogen atom shifts and two successive hydrogen losses.³²⁻³⁶

However, until now, the formation pathway(s) to cyclopentadiene $(c-C_5H_6)$ —a potential precursor to the cyclopentadienyl radical $(c-C_5H_5)$ —together with its structural isomers in combustion flames has not been fully explored (Scheme 1). These C_5H_6 isomers can be classified as (i) isomers carrying a three-membered ring (A–F), (ii) acyclic isomers (G, H, I, K), (iii) four-membered ring isomers (J), and (iv) cyclic isomers with a five-membered ring (L). The chemistry of cyclopropene derivatives (A–F) has drawn substantial interest considering the high ring strain energy of 222 kJ mol^{-1.37,38} 1-Vinylcyclopropene (C, E) is extremely reactive, even at 195 K; this molecule was first synthesized via dehydrochlorination of chlorovinylcyclopropane.³⁹ Bolch and co-workers isolated 1,2-bis(methylene)cyclopropane (F) through gas chromatography.⁴⁰ Hansen et al. performed a

systematic investigation of the nature of C₅H_x species in rich flames fueled by allene (H₂CCCH₂), propyne (CH₃CCH), cyclopentene ((CH₂)₃(CH)₂), and benzene (C₆H₆).⁴¹ The most stable C₅H₆ isomer cyclopentadiene (L) was confirmed to be the dominating C5H6 isomer; the four-membered cyclic isomer 3-methylenecyclobut-1-ene (J) could not be detected.⁴¹ Besides hydrocarbon flames, C5H6 isomers can also be formed in bimolecular reactions.^{42–44} Li et al. computed the C_5H_7 PES exploiting the hybrid density functional B3LYP/CBSB7 level of theory via the reaction of the ethynyl (C₂H) radical with propene (C₃H₆).⁴² Formation of the atomic hydrogen emission product, 2-methyl-1-buten-3-yne (H), was initiated through an ethynyl (C_2H) addition to the carbon-carbon double bond of propene (C_3H_6) .⁴² At higher temperature and collision energies, 3-penten-1-yne (I) + H and 4-penten-1-yne (G) + H are likely products.⁴² Crossed molecular beams studies of the 1-propynyl radical (H₃CCC) with ethylene (C_2H_4) revealed the barrierless gas-phase synthesis of distinct C₅H₆ isomers.⁴³ The 1-propynyl radical (H₃CCC) was found to add barrierless to the double bond of ethylene (C_2H_4) leading to a long-lived C₅H₇ complex(es) ultimately forming 1penten-3-yne (K) along with the atomic hydrogen solely from the ethylene reactant.⁴³ Furthermore, the methylidyne radical (CH) plus 1,3-butadiene (CH₂CHCHCH₂) reaction was initiated by addition of the CH radical to one of the terminal carbon atom and/or carbon-carbon double bond of 1,3butadiene without entrance barrier; this reaction resulted in the preparation of three-membered ring products cis- and trans-3-vinyl-cyclopropene (A, B).44 However, none of these isomers could have been identified in the interstellar medium so far due to the low dipole moments. Tagging these C_5H_6 hydrocarbons with cyano groups leads to organics with

Table 1. Peak Velocities (v_p) and Speed Ratios (S) of the Methylidyne (CH) Radical, and 1,2-Butadiene (CH_2CCHCH_3) along with the Corresponding Collision Energy (E_C) and Center-of-Mass Angle (Θ_{CM}) for the CH + 1,2-Butadiene Reaction

beam	$v_p (m s^{-1})$	S	$E_{\rm C}~({\rm kJ~mol}^{-1})$	$\Theta_{\rm CM}$ (deg)
СН (Х ² П)	1827 ± 15	12.0 ± 1.2		
CH_2CCHCH_3 (X ¹ A')	777 ± 12	9.5 ± 0.3	20.6 ± 0.4	60.5 ± 0.3

significant dipole moments of at least 3 D.⁴⁵ This approach has been carried out successfully through the detection of cyanoallene (from allene) and cyanobenzene (from benzene) formed via the barrier-less neutral-neutral reactions of the cyano radical with the corresponding hydrocarbons in the cold molecular cloud TMC-1.⁴⁵⁻⁵⁰

Considering that the aforementioned studies on the formation of distinct C5H6 isomers were dominated by kinetic modeling and ab initio calculation, it is obvious that reaction dynamics studies under single collision conditions are desirable to elucidate the preparation and reaction channels leading to C_5H_6 isomers. Here, we report the results of the bimolecular reactions of the methylidyne radical (CH) with 1,2-butadiene (CH₂CCHCH₃). By merging the experimental data with electronic structure calculations on the C₅H₆ and C₅H₇ PES, we propose that 1-vinyl-cyclopropene, 1-methyl-3-methylenecyclopropene, and 1,2-bis(methylene)cyclopropane along with atomic hydrogen are formed via entrance-barrierless, complex forming elementary reactions under single collision conditions. These experimental conditions exclude successive reactions and in particular hydrogen-assisted isomerization processes that would alter the initial reaction products.^{51–53}

2. EXPERIMENTAL AND COMPUTATIONAL METHODS

2.1. Experimental Methods. The methylidyne (CH; $X^{2}\Pi$) radical reaction with 1,2-butadiene (CH₂CCHCH₂; X¹A') was conducted under single collision conditions using a crossed molecular beams machine at the University of Hawaii.⁵⁴ In the primary source chamber, the pulsed methylidyne molecular beam was formed via photodissociation (COMPex 110, Coherent, Inc.; 248 nm; 30 Hz) of bromoform (CHBr₃, Aldrich Chemistry, \geq 99%) seeded in helium (99.9999%; AirGas) at fractions of 0.12% at a backing pressure of 2.2 atm.^{20,55} The methylidyne beam passed a skimmer and was velocity selected by a four-slot chopper wheel yielding a peak velocity v_p of 1827 \pm 15 m s⁻¹ and speed ratio S of 12.0 \pm 1.2. The rotational temperature of the methylidyne radicals were determined to be 14 ± 1 K via laser-induced fluorescence (LIF).⁵⁶ The pulsed (60 Hz) supersonic beam of the 1,2butadiene reactant was generated in the secondary source chamber with v_p of 777 \pm 12 m s⁻¹ and S of 9.5 \pm 0.3; the 1,2butadiene molecular beam crossed perpendicularly with the CH radical beam at a collision energy $E_{\rm C}$ of 20.6 \pm 0.4 kJ mol⁻¹ and a center of mass (CM) angle Θ_{CM} of 60.5 \pm 0.3°. Each supersonic beam was produced via a piezoelectric pulse valve, which was operated at a repetition rate of 60 Hz, a pulse width of 80 μ s, and a peak voltage of -400 V. The secondary pulsed valve was triggered 90 μ s prior to the primary pulsed valve to account for the distinct velocities and nozzle-toskimmer distances thus allowing the best overlap and hence highest reactive scattering signal of the methylidyne radicals with 1,2-butadiene. Peak velocities and speed ratios for the reactants along with the corresponding collision energies and center-of-mass angles are summarized in Table 1.

The detector consists of a Brink-type ionizer,⁵⁷ a quadrupole mass spectrometer (QMS), and a Daly type ion counter⁵⁸ housed within a triply differentially pumped chamber reaching an ultimate pressure of 6×10^{-12} Torr. This assembly is rotatable in the plane defined by both supersonic beams. The neutral reaction products entering the detector are ionized via electron impact ionization (80 eV, 2 mA),57 then filtered according to their mass-to-charge ratios (m/z) through a QMS (Extrel; QC 150) operated with a 2.1 MHz oscillator, and ultimately detected by a Daly type ion counter.⁵⁸ Time-offlight (TOF) spectra were recorded at laboratory (LAB) angles in the range of $0^{\circ} \le \Theta \le 69^{\circ}$ with respect to the methylidyne beam ($\Theta = 0^{\circ}$). For the data analysis, the TOF spectra were integrated and normalized to obtain the product angular distribution in the LAB frame. A forward-convolution routine was used to fit the laboratory data; this procedure represents an iterative method exploiting a user-defined center-of-mass (CM) translational energy $P(E_{\rm T})$ and angular $T(\theta)$ flux distributions; the $T(\theta)$ is defined as a sum of up to five Legendre polynomials, whereas a user defined translational energy distribution $P(E_{\rm T})$ can be defined by four input parameters.^{59,60} These functions are varied iteratively until best fits of the TOF data and angular distribution are achieved.^{61,62} These functions define the reactive differential cross section $I(u, \theta) \sim P(u) \times T(\theta)$ with the center-of-mass velocity $u^{59,60,63-65}$ The error ranges of the $P(E_{\rm T})$ and $T(\theta)$ functions are determined within 1σ limits of the errors in the corresponding laboratory angular distribution, velocity spreads, and beam velocities, while maintaining a good fit of the laboratory TOF spectra.

2.2. Computational Methods. Geometries of various species on the C_5H_7 potential energy surface (PES) accessed by the CH + 1,2-butadiene reaction were optimized employing the B3LYP exchange correlation functional within density functional theory $^{66, \overleftarrow{67}}$ and using the 6-311G(d,p) basis set. Then, vibrational frequencies for all optimized structures were calculated at the same B3LYP/6-311G(d,p) level of theory. The frequencies were utilized to characterize these structures as local minima or transition states, to evaluate zero-point vibrational energy corrections (ZPE), and in rate constant calculations. Single-point energies for each optimized structure were rectified using the explicitly correlated coupled clusters method with single and double excitations with perturbative treatment of triple excitations, CCSD(T)-F12,^{68,69} using correlation-consistent Dunning's cc-pVTZ-f12 basis set.^{70,7} The anticipated accuracy of the CCSD(T)-F12/cc-pVTZ $f_{12}/B_{3LYP}/6_{-311G}(d,p) + ZPE(B_{3LYP}/6_{-311G}(d,p))$ results is typically within 4 kJ mol⁻¹ or better.⁷² The electronic structure calculations employed the GAUSSIAN 0973 and MOLPRO 2010⁷⁰ quantum chemistry software codes. Energydependent rate constants for the variety of unimolecular reactions occurring on the C5H7 surface after the initial bimolecular association step were evaluated within Rice-Ramsperger-Kassel-Marcus (RRKM) theory.74-76 The internal energy dependent version of the RRKM approach was utilized within the harmonic approximation using our own

code Unimol⁷⁷ for multiwell and multichannel unimolecular reactions taking place under single-collision conditions.⁷⁸ In this case, the available internal energy is taken as the sum of the collision and chemical activation energies. The calculations take into account only one energy level because no collisional activation/deactivation can occur in crossed molecular beams. Finally, RRKM rate constants are used in product branching ratios calculations within steady-state approximation.

3. RESULTS

3.1. Laboratory Frame. The reactive scattering signal for the reaction of the methylidyne radical (CH; $X^2\Pi$)) with 1,2butadiene (CH₃CHCCH₂; X¹A') was scanned at mass to charge ratios (m/z) of 67, 66, and 65. These TOF spectra were found to be superimposable after scaling, indicating that ion counts at m/z = 67, 66, and 65 originate from the same reaction channel, i.e., the formation of C5H6 isomers via the reaction CH (13 amu) + C_4H_6 (54 amu) $\rightarrow C_5H_6$ (66 amu) + H (1 amu). Ion counts at m/z = 65 (C₅H₅⁺) could be connected to dissociative electron impact ionization of the m/z= 66 (C₅H₆⁺) parent product(s); the signal at m/z = 67 $({}^{13}CC_4H_6^+)$ arose from the natural abundance of carbon atom isotopes leading to ¹³CC₄H₆ with the signal accumulated at a level of 5 \pm 3%. Since the ion counts of the parent ion m/z =66 $(C_5H_6^+)$ were collected only at a level of 19 ± 3% compared to the fragment ion m/z = 65 (C₅H₅⁺), the TOF spectra were acquired at the best signal-to-noise ratio at m/z =65 $(C_5H_5^+)$. The resulting TOFs were then normalized with respect to the center-of-mass angle and integrated to yield the laboratory angular distribution (LAD; Figure 1); this distribution is nearly symmetric around Θ_{CM} and spans the angular range from 40.25° to 67.75° in the laboratory frame. This result indicates that the reaction of the methylidyne radical with 1,2-butadiene likely proceeds via indirect scattering dynamics through $C_{s}H_{7}$ reaction intermediate(s) ultimately dissociating to C_5H_6 by emitting atomic hydrogen. The $CH_3/C_2H_3/C_3H_3/C_3H_5$ loss channels, which form $C_4H_4/$ $C_{3}H_{4}/C_{2}H_{4}/C_{2}H_{2}$, products cannot be probed in the present experiment due to the background counts of CH_3^+ , $C_2H_2^+$, $C_2H_3^{+}$, $C_2H_4^{+}$, $C_3H_3^{+}$, $C_3H_4^{+}$, $C_3H_5^{+}$, and $C_4H_4^{+}$ species stemming from dissociative electron impact ionization of the 1.2-butadiene reactant.

3.2. Center-of-Mass Frame. For the CH + 1,2-butadiene reaction, the TOF spectra and LAD (Figure 1) can be fit via a single reaction channel CH (13 amu) + C_4H_6 (54 amu) \rightarrow C_5H_6 (66 amu) + H (1 amu). The resulting CM translational energy $P(E_{\rm T})$ and angular $T(\theta)$ flux distributions are shown in Figure 2. The hatched areas of the $P(E_{\rm T})$ and $T(\theta)$ represent the error limits determined within the 1σ error limits of the LAD. The maximum energy E_{max} of the CM translational energy distribution $P(E_{\text{T}})$ (Figure 2), the collision energy (E_{C}) , and the reaction energy $(\Delta_{\rm r} \bar{G})$ are connected via $E_{\rm max} = E_{\rm C} - E_{\rm C}$ $\Delta_r G$ for those molecules born without internal excitation on the basis of the principle of conservation of energy. The $P(E_{\rm T})$ has a maximum energy cutoff of 211 ± 21 kJ mol⁻¹ suggests a reaction energy of -190 ± 21 kJ mol⁻¹ to form C₅H₆ isomers along with atomic hydrogen. The distribution maximum of $P(E_{\rm T})$ is located at 28 ± 3 kJ mol⁻¹ suggesting a tight exit transition state leading to C_5H_6 molecules from the C_5H_7 intermediate(s).⁷⁹ An average translational energy of the products calculated to be $59 \pm 6 \text{ kJ mol}^{-1}$ reveals that about $28 \pm 3\%$ of the total available energy is deposited into the product translation degrees of freedom. These findings suggest

Figure 1. Laboratory angular distribution (top) and time-of-flight (TOF) spectra (bottom) recorded at mass-to-charge (m/z) 65 $(C_5H_5^+)$ from the reaction of the methylidyne radical (CH; $C_{\infty\nu}$; $X^2\Pi$) with 1,2-butadiene (CH₂CCHCH₃; C_s ; X^1A'). The directions of the CH radical and 1,2-butadiene beams are defined as 0° and 90°, respectively. The red solid lines represent the best-fit derived from center-of-mass functions depicted in Figure 2 with black circles defining the experimental data.

indirect reactive scattering dynamics leading to $C_{5}H_{6}$ isomer(s) via $C_{3}H_{7}$ intermediate(s).^{65,80} Furthermore, the $T(\theta)$ displays nonzero intensity over the complete angular range from 0° to 180° and is forward–backward symmetric with a maximum at 90° (sideways scattering). This forward– backward symmetry implies that the lifetime of the $C_{5}H_{7}$ intermediate is longer than its rotational period(s).⁸¹ The sideways scattering suggests significant geometrical constraints on the exit transition state with the hydrogen atom eliminated nearly perpendicular to the rotational plane of the decomposing intermediate and hence almost parallel to the total angular momentum vector.^{59,82}

4. DISCUSSION

It is always beneficial to merge the experimental results with electronic structure calculations to elucidate the underlying reaction mechanism(s) leading to C_5H_6 formation (Figures 3–6 and Figures S1–S10; Table 2 and Table S1). The doublet C_3H_7 potential energy surface (PES) was studied systematically by methylidyne radical (CH) addition to the C–C double bonds of 1,2-butadiene reactant via 79 C_5H_7 intermediates (i1–i79) and 143 transition states to the hydrogen atom emission products (C_5H_6 ; p1–p17, p20, p21, p25–p30, p36), CH₃ group loss products (C_4H_4 ; p19, p23, p32, p35), C_2H_3 group loss products (C_3H_4 ; p18, p33), C_3H_3 group loss products (C_2H_2 ; p22, p34, p37) (Figures 3–6 and Figures S1–S5). The intermediates and products that were involved in our previous

Figure 2. Center-of-mass (CM) translational energy $P(E_T)$ and angular $T(\theta)$ flux distributions for the CH + 1,2-butadiene reaction. The hatched areas define regions of acceptable fits.

works on methylidyne radical (CH) plus 1,3-butadiene reaction are consistent with the current study.⁴⁴ Note that some metastable intermediates are not included in the PES figures. In order to simplify this complicated PES, the latter is divided into six sections:

(1) Products **p5**, **p14**, **p16**, and **p25–p27** produced by CH radical addition to the terminal and central C=C bonds

of 1,2-butadiene via i48, i49, i51, i53, i55, i57, i60, and i61 (Figure 3).

- (2) Products p12, p13, and p17-p22 resulting from the same initial channels involving intermediates i2, i4, i7, i9, i16, i17, i22-i29, i36, i39-i43, i48, i49, i51, i53, i55, i57, i60, i63, and i64 (Figures S1-S2).
- (3) Products p12, p17, and p28-p30 originating from methylidyne addition to the terminal and central C=C bonds of 1,2-butadiene via i23, i28, i29, i42, i48, i50-i53, i60, and i65-i71 (Figure 4).
- (4) Products p1-p3, p9, and p15 produced by CH radical addition to the central C=C bond of 1,2-butadiene through i3-i6, i14, i32, i51, i53, i73, i75, and i79, (Figure S3).
- (5) Products p4, p6, p7, p11, p16, p33, p36, and p37 stemming from CH radical addition to the central C=C bond of 1,2-butadiene through i3-i5, i10, i14, i30, i37, i38, i51, i53, i73, i75, i77, and i79 (Figure S4).
- (6) Products p22-p24 and p31-p35 originating from CH radical addition to the terminal and central C=C bonds of 1,2-butadiene through i8, i14, i15, i31, i45, i48, i49, i51, i53, i55, i57, i60, i63, i65-i67, and i71 (Figure S5).

Figures S6–S10 trace the hydrogen loss in the methylidyne-1,2-butadiene reaction with hydrogen atom originating from the methylidyne radical; the CH, CH₂, and CH₃ groups of 1,2butadiene are highlighted in different colors. Considering the overall reaction energies, cyclopentadiene (p1), trans-1,2,4pentatriene (p2), cis-1,2,4-pentatriene (p3), 4-penten-1-yne (**p4**), 1-vinylcyclopropene (**p5**), *cis*-3-vinyl-cyclopropene (**p6**), 4-penten-1-yne (p7), 1-penten-3-yne (p8), (Z)-3-penten-1yne (p9), 1,2,3-pentatriene (p10), trans-3-vinyl-cyclopropene (p11), 1-methyl-1,3-cyclobutadiene (p12), 3-methylenecyclobutene (p13), cyclopropylacetylene (p14), 3-penten-1-yne (p15), and 3-ethylidenecyclopropene (p16), bicyclo[2.1.0]pent-1(4)-ene (p17), 2-methylenebicyclo[1.1.0]butane (p20), bicyclo[2.1.0]pent-2-ene (p21), spiro[2.2]pent-1-ene (p25), 1-vinylcyclopropene (p26), ethenylidenecyclopropane (p27), 1-methyl-3-methylenecyclopropene (p28), 1,2-bis-(methylene)cyclopropane (p29), 2-methyl-1-buten-3-yne

Figure 3. Portion of the C_5H_7 potential energy surface (PES) leading to p5, p14, p16, and p25-p27 via intermediates i48, i49, i51, i53, i55, i57, i60, and i61.

pubs.acs.org/JPCA

Article

Table 2. Statistical Branching Ratios (%) for the Reaction of CH + 1,2-Butadiene at Collision Energy $E_{\rm C}$ of 20.6 kJ mol^{-1 a}

		initial intermediate									
product	i46 ^b	i47 ^b	i48 ^c	i49 ^c	i50 ^d	i51 ^d	i8 ^e	i15 ^f	i31 ^f	i65 ^g	
total	100	100	100	100	100	100	100	100	100	100	
p1	0.7	7.9	0.2	0.2	9.5	9.5	0.5	0.2	0.2	0.0	
p2	0.5	6.5	0.1	0.1	7.9	7.9	0.3	0.0	0.0	0.0	
p3	0.5	7.1	0.1	0.1	8.5	8.5	13.2	0.1	0.1	0.0	
p4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	
p5	1.7	0.3	1.8	1.7	0.0	0.0	0.0	0.0	0.0	0.0	
p6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
p 7	0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.5	
p8	3.6	0.7	3.8	3.8	0.0	0.0	0.0	7.3	7.3	0.0	
р9	2.1	29.2	0.3	0.3	35.2	35.2	1.4	0.1	0.1	0.0	
p10	0.1	0.2	0.1	0.1	0.3	0.3	0.0	0.1	0.1	0.0	
p11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
p12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
p13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	
p14	0.0	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	0.0	
p15	2.2	30.6	0.3	0.3	36.9	36.9	1.5	0.1	0.1	0.0	
p16	0.8	0.2	0.8	0.8	0.0	0.0	0.0	0.0	0.0	0.0	
p17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
p18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
p19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
p20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
p21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
p22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
p23	85.3	15.8	90.6	90.6	0.2	0.2	0.0	92.1	92.1	0.0	
p24	0.0	0.4	0.0	0.0	0.5	0.5	80.9	0.0	0.0	0.0	
p25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
p26	1.6	0.3	1.7	1.7	0.0	0.0	0.0	0.0	0.0	0.0	
p27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
p28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	
p29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	
p30	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.2	
p31	0.1	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	
p32	0.0	0.7	0.0	0.0	0.8	0.8	0.0	0.0	0.0	0.0	
p33	0.3	0.1	0.0	0.1	0.1	0.1	0.0	0.0	0.0	1.1	
p34	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	
p35	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	46.4	
p36	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	
p37	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

^{*a*}Here, **p1**–**p37** are cyclopentadiene, *trans*-1,2,4-pentatriene, *cis*-1,2,4-pentatriene, 4-penten-1-yne, 1-vinylcyclopropene, *cis*-3-vinylcyclopropene, 4-penten-1-yne (a conformer of **p4**), 1-penten-3-yne, (*Z*)-3-penten-1-yne, 1,2,3-pentatriene, *trans*-3-vinyl-cyclopropene, 1-methyl-1,3-cyclobutadiene, 3-methylenecyclobutene, cyclopropylacetylene, (*E*)-3-penten-1-yne, 3-ethylidene-cyclopropene, bicyclo[2.1.0]pent-1(4)-ene, cyclopropane, cyclobutadiene, 2-methylenebicyclo[1.1.0]butane, bicyclo[2.1.0]pent-2-ene, acetylene with *c*-CCH₂CH₂ radical, 1-buten-3-yne, ethylene with CH₂CCH radical, spiro[2.2]pent-1-ene, 1-vinyl-cyclopropene (a conformer of **p5**), ethenylidenecyclopropane, 1-methyl-3-methylenecyclopropene, 1,2-bis(methylene)cyclopropane, 2-methyl-1-buten-3-yne, ethylene with *c*-CCHCH₂ radical, methylenecyclopropane, allene with CHCH₂ radical, acetylene with CH₃CCH₂ radical, 1,2,3-butatriene, 4-penten-1-yne (a conformer of **p4**), and acetylene with CH₂CHCH₂ radical. ^{*b*}A metastable intermediate formed by CH addition to the bare C atom in 1,2-butadiene. ^{*c*}Formed by CH addition to the central C=C bond in 1,2-butadiene. ^{*c*}Formed by CH addition to the central C=C bond in 1,2-butadiene. ^{*c*}Could be potentially formed by insertion of CH into a C-H in the CH₃ group in 1,2-butadiene. ^{*f*}Could be potentially formed by insertion of CH into a C-H in the CH₃ group in 1,2-butadiene.

(p30), and 4-penten-1-yne (p36) isomers can be formed along with the atomic hydrogen with computed reaction energies of -400, -281, -271, -258, -192, -181, -260, -289, -282, -247, -185, -148, -285, -237, -280, -170, -9, -189, -205, -116, -201, -202, -196, -211, -280, and -258 kJ mol⁻¹, respectively, with mean errors within 4 kJ mol⁻¹. The CH₃/C₂H₃/C₃H₃/C₃H₅ loss products**p18**,**p19**,**p22**,**p23**,**p24**,**p31**,**p32**,**p33**,**p34**,**p35**, and**p37**cannot be detected in the present experiment. The computed reaction energies for the formation of 1-vinylcyclopropene (**p5**),*cis*-3-vinyl-cyclo-

propene (**p6**), *trans*-3-vinyl-cyclopropene (**p11**), 3-ethylidenecyclopropene (**p16**), methylenebicyclo[1.1.0]butane (**p20**), bicyclo[2.1.0]pent-2-ene (**p21**), 1-vinylcyclopropene (**p26**), ethenylidenecyclopropane (**p27**), 1-methyl-3-methylenecyclopropene (**p28**), and 1,2-bis(methylene)cyclopropane (**p29**) plus atomic hydrogen range between -211 and -170 kJ mol⁻¹; these data correlate with our experimentally determined reaction energy of -190 ± 21 kJ mol⁻¹. The high-energy isomers—1-methyl-1,3-cyclobutadiene (**p12**), bicyclo[2.1.0]pent-1(4)-ene (**p17**), and spiro[2.2]pent-1-ene (**p25**)—might

Figure 4. Portion of C₅H₇ PES leading to p12, p17, and p28-p30 via intermediates i23, i28, i29, i42, i48, i50-i53, i60, and i65-i71.

be masked in the low energy portion of the $P(E_T)$. However, if solely formed, the $P(E_T)$ values for **p12**, **p17**, and **p25** would have a maximum energy cutoff of 169, 30, and 137 kJ mol⁻¹, respectively, leading to relatively narrow LAD and TOF spectra. In order to better correlate the experimental and theoretical results, we focus on the discussion of pathways (Figures 3 and 4) that lead to the products potentially observed in experiment. The details of the other reaction pathways (Figures S1–S5) may be found in Supporting Information.

4.1. The CH Radical Addition to the Terminal and Central C=C Bonds of 1,2-Butadiene Resulting in Products p5, p14, p16, and p25-p27 via Intermediates i48, i49, i51, i53, i55, i57, i60, and i61 (Figure 3). The CH radical can add barrierlessly to the terminal and central C=Cbonds of 1,2-butadiene forming the initial three-member adducts i48/i49 and i51, respectively. Two conformers of the 1-vinylcyclopropene product (p5 and p26) can be formed via hydrogen atom emission from the CH₃ group in i48 and i49, respectively, via loose exit transition states lying close to 8 kJ mol⁻¹ above the separated products. The CHCH₃ moiety rotation in i48 leads to i49 via a moderate barrier of 55 kJ mol⁻¹ above i48. Intermediate i49 is also connected with i48 via a high barrier of 213 kJ mol⁻¹ above i48 as H shift from the CH₂ moiety to the adjacent CH group in i48; the decomposition of both isomers leads to the 3-ethylidenecyclopropene (p16) product via atomic hydrogen loss from the CH₂ group in i48 and i49. A hydrogen atom migration from the terminal CH₃ group to the adjacent CH moiety of i48 and i49 results in intermediate i57. Two different conformers of 1vinylcyclopropene (p5 and p26) can also be formed via hydrogen atom emission from the nonterminal CH₂ moiety in i57 via tight exit transition states lying close to 20 kJ mol⁻¹ above the separated products. A 1,4-H migration from the CH₃ moiety to the CH group in the three-member ring of i48 leads to intermediate i60; a similar 1,3-hydrogen atom shift also interconverts intermediates i51 and i53. The ring opening and the ring reformation by creation of a C-C bond between the

CH₂ groups of i53 ("methylene walk") results in the threemember cyclic intermediate i55 accessed via a barrier of 225 kJ mol⁻¹ above i53; the decomposition of i55 yields cyclopropylacetylene (p14) via atomic hydrogen loss from the terminal CH₂ group of i55. The intermediate i60 can also be generated via a hydrogen migration from the CH group to the adjacent bare carbon moiety in i55. Both isomers can eliminate a hydrogen atom from the CH moiety leading to the product ethenylidenecyclopropane (p27). The 1-vinylcyclopropene products (p5 and p26) can be produced via atomic hydrogen emission from the c-CCH₂CH₂ moiety of i60 via loose exit transition states lying 6 and 8 kJ mol-1 above the separated products, respectively. The second three-member ring closures in i57 and i60 lead to a bicyclic spiran-like intermediate i61; the decomposition of the latter yields spiro[2.2]pent-1-ene (p25) via hydrogen atom loss from the CH₂ moiety of the *c*- $CCHCH_2$ group in i61. In brief, p5 can be formed via pathways 1 and 2 with a hydrogen loss from the 1,2-butadiene reactant and via pathway 3 with hydrogen emission possible from both reactants. Since there are two transition states between i48 and i49, we use i48 \rightarrow i49 and i48 \rightarrow i49 to denote the conformational change and hydrogen migration processes, respectively. Product p14 and p27 can be accessed via pathways 4 and 13, respectively, with the hydrogen atom loss originating from the CH₂ group of the 1,2-butadiene reactant. Product p16 is produced via pathway 5 with the atomic hydrogen emission from the CH₂ group of 1,2butadiene and via pathway 6 with hydrogen atom loss both from the methylidyne radical reactant and the CH₂ group of 1,2-butadiene. Product p25 may be formed through pathway 7 with the hydrogen loss from 1,2-butadiene and via pathway 8 with atomic hydrogen emission from both the radical reactant and the CH₂ group of 1,2-butadiene. Product p26 is reached via pathways 9-11 with H atom loss from the 1,2-butadiene reactant and via pathway 12 with the hydrogen loss from both reactants. Considering the experimentally derived reaction energy of -190 ± 21 kJ mol⁻¹, the products 1-vinylcyclopropene (p5 and p26), 3-ethylidenecyclopropene

(p16), and ethenylidenecyclopropane (p27) with reaction energies of -192, -202, -170, and -202 kJ mol⁻¹, respectively, are the most likely reaction products. Considering significant barriers of over 200 kJ mol⁻¹, the hydrogen shifts between i48 to i49, i48/i49 to i57, i48 to i60, i53 to i55, and i55 to i60 are less competitive than the conformational change $i48 \rightarrow i49$; hence, we may rule out the pathways 2-3, 6-8, 10-12, and 13 leading to p5, p16, p25, p26, and p27. Therefore, p5, p16, and p26 can likely be formed under our experimental conditions via pathways 1, 5, and 9, respectively.

$$CH + CH_3CHCCH_2 \rightarrow i48 \rightarrow p5 + H$$
 (1)

$$CH + CH_{3}CHCCH_{2} \rightarrow [i48]/[i49]/[i48 \rightarrow i49]$$
$$/[i48 \rightarrow i49] \rightarrow i57 \rightarrow p5 + H$$
(2)

$$CH + CH_3 CHCCH_2 \rightarrow [i48]/[i51 \rightarrow i53 \rightarrow i55]$$

. . .

$$\rightarrow$$
 i60 \rightarrow p5 + H (3)

$$CH + CH_{3}CHCCH_{2} \rightarrow i51 \rightarrow i53 \rightarrow i55 \rightarrow p14 + H$$
(4)

 $CH + CH_3CHCCH_2 \rightarrow [i48]/[i49]/[i48 \rightarrow i49] \rightarrow p16$ (5)

+ H

$$CH + CH_3CHCCH_2 \rightarrow i48 \rightarrow i49 \rightarrow \mathbf{p16} + H$$
 (6)

$$CH + CH_{3}CHCCH_{2} \rightarrow [i48/i49 \rightarrow i57]$$

$$/[i48 \rightarrow i49 \rightarrow i57]/[i48 \rightarrow i60]$$

$$/[i51 \rightarrow i53 \rightarrow i55 \rightarrow i60] \rightarrow i61 \rightarrow p25 + H \quad (7)$$

$$CH + CH_{3}CHCCH_{2} \rightarrow i48 \rightarrow i49 \rightarrow i57 \rightarrow i61 \rightarrow p25$$

+ H (8)

$$CH + CH_3CHCCH_2 \rightarrow [i49]/[i48 \rightarrow i49] \rightarrow p26 + H$$
(9)

$$CH + CH_3 CHCCH_2 \rightarrow i48 \rightarrow i49 \rightarrow \mathbf{p26} + H \qquad (10)$$

 $CH + CH_3CHCCH_2 \rightarrow [i48]/[i49]/[i48 \rightarrow i49]$

$$/[i48 \rightarrow i49] \rightarrow i57 \rightarrow p26 + H \tag{11}$$

$$\begin{array}{l} \mathrm{CH} + \mathrm{CH}_{3}\mathrm{CH}\mathrm{CCH}_{2} \rightarrow [\mathrm{i48}]/[\mathrm{i51} \rightarrow \mathrm{i53} \rightarrow \mathrm{i55}] \\ \\ \rightarrow \mathrm{i60} \rightarrow \mathrm{p26} + \mathrm{H} \end{array} \tag{12}$$

$$CH + CH_3CHCCH_2 \rightarrow [i51 \rightarrow i53 \rightarrow i55]$$

$$/[i48 \rightarrow i60]/[i51 \rightarrow i53 \rightarrow i55 \rightarrow i60] \rightarrow p27 + H$$
(13)

4.2. The CH Radical Addition to the Terminal and Central C=C bonds of 1,2-Butadiene Leading to Products p12, p17, and p28-p30 via i23, i28, i29, i42, i48, i50-i53, i60, and i65-i71 (Figure 4). The barrierless addition of the CH radical to the central C=C bond of 1,2butadiene leads to adducts i50 and i51. 1-Methyl-3methylenecyclopropene (p28) can be formed via atomic hydrogen emission from the CH moiety of the CHCH₃ group in i50 and i51 via a tight exit transition state lying 16 kJ mol⁻¹ above the separated products. A hydrogen atom migration from the CH₃ group to the nonadjacent CH group in i50 leads

to intermediate i52 via a barrier of 186 kJ mol⁻¹ above i50. The intermediate i65 can be accessed via H migration between CH moieties in i50 and i51. The product 1,2-bis(methylene)cyclopropane (p29) can be formed via H atom loss from the CH₃ group of i65 via a loose exit transition state lying 8 kJ mol^{-1} above the separated products. Alternatively, a ring opening of intermediates i52, i53, and i60 leads to the acyclic intermediate i66; the decomposition of i52 and/or i53 yields 1,2-bis(methylene)cyclopropane (p29) via atomic hydrogen emission from the CH moiety of i52 and/or i53. The C-C bond formation between two terminal CH₂ moieties in i52 forms a four-member ring and produces a bicyclic intermediate i69. The product bicyclo[2.1.0]pent-1(4)-ene (p17) can be formed via H atom elimination from the CH group of i69 via a loose exit transition state lying 2 kJ mol⁻¹ above the separated products. A hydrogen migration from the CH₂ group of terminal CHCH₂ moiety to one of the terminal CH₂ groups in i66 leads to i67, while the ring opening of i65 and a 1,3hydrogen shift from CH moiety to the nonadjacent CH₂ group in i66 both lead to i71. The product 2-methyl-1-buten-3-yne (p30) can be formed via H atom emission from the terminal CH₂C moiety of i71 via a loose exit transition state lying 13 kJ mol⁻¹ above the separated products. The conformers i67 and i68 are connected via a low barrier of 22 kJ mol⁻¹ above i67; the product 2-methyl-1-buten-3-yne (p30) can be accessed via H atom loss from the nonterminal CH moiety of both intermediates via tight exit transition states lying 24 and 23 kJ mol^{-1} above the separated products, respectively. The C-C bond formation between the terminal CH and CH₂ moieties of i68 lead to a four-member cyclic intermediate i70 and the decomposition of i70 yields the product 1-methyl-1,3-cyclobutadiene (p12) via atomic hydrogen emission from the CH₂ moiety of i70. Here, similar to i29-p19, the transition state for i70-p12 could be found at the DFT level, but its energy sinks below the product at CCSD(T)-F12 indicating that the reverse hydrogen atom addition to methylcyclobutadiene most likely occurs without barrier. In brief, p12 can be formed via pathway 14 with H atom emission from the CH₂ moiety of 1,2butadiene or from both CH radical and the CH₃ group of 1,2butadiene. The products p17 and p28 can be accessed through pathways 15 and 16, respectively, with hydrogen loss from the CH group of 1,2-butadiene. The product p29 can be produced via pathways 17 and 18 with the H atom emission from the methylidyne radical reactant or the CH₃ group of 1,2butadiene. The product p30 can be formed via pathway 19 with hydrogen emission from the CH group of 1,2-butadiene; this product can be also reached via pathways 20 and 21 with hydrogen atom loss from the CH₃ and the CH₂ groups of 1,2butadiene. Considering the experimentally derived reaction energy of -190 ± 21 kJ mol⁻¹, the 1-methyl-3-methylenecyclopropene (p28) and 1,2-bis(methylene)cyclopropane (p29) with the reaction energies of -196 and -211 kJ mol⁻¹ are among likely reaction products. Due to high barriers of 200 kJ mol^{-1} , the isomerization processes from i50 to i65 and from i51 to i65, are expected to be somewhat less competitive than $i50 \rightarrow i52$ and $i51 \rightarrow i53$, respectively. Therefore, p28 and p29 can be more likely formed via pathways 16 and 18, respectively.

$$\begin{aligned} \mathrm{CH} + \mathrm{CH}_{3}\mathrm{CHCCH}_{2} &\rightarrow [\mathrm{i}\mathbf{50} \rightarrow \mathrm{i}\mathbf{52}]/[\mathrm{i}\mathbf{51} \rightarrow \mathrm{i}\mathbf{53}] \\ /[\mathrm{i}\mathbf{48} \rightarrow \mathrm{i}\mathbf{60}] \rightarrow \mathrm{i}\mathbf{66} \rightarrow \mathrm{i}\mathbf{67} \rightarrow \mathrm{i}\mathbf{68} \rightarrow \mathrm{i}\mathbf{70} \rightarrow \mathrm{p}\mathbf{12} \\ + \mathrm{H} \end{aligned} \tag{14}$$

Figure 5. Reduced C₃H₇ PES leading to p5, p16, p26, p28, and p29. Pathways leading to p5 and p26 are colored in red and blue, respectively.

Figure 6. Computed geometries of the exit transition states leading to p5, p16, p26, p28, and p29. Angles of the departing hydrogen atoms are given in degrees with respect to the rotation plane of the decomposing complex.

$CH + CH_3CHCCH_2 \rightarrow i50$	ightarrow is 2 $ ightarrow$ i69 $ ightarrow$ p17 + H	
	(15)	

$$CH + CH_3 CHCCH_2 \rightarrow [\mathbf{i50}]/[\mathbf{i51}] \rightarrow \mathbf{p28} + H \qquad (16)$$

$$CH + CH_{3}CHCCH_{2} \rightarrow [i50]/[i51] \rightarrow i65 \rightarrow p28/p29$$
$$+ H$$
(17)

$$CH + CH_3CHCCH_2 \rightarrow [\mathbf{i50} \rightarrow \mathbf{i52}]/[\mathbf{i51} \rightarrow \mathbf{i53}]$$
$$\rightarrow \mathbf{p29} + H \tag{18}$$

$$\begin{split} & \text{CH} + \text{CH}_{3}\text{CHCCH}_{2} \rightarrow [\text{i}\textbf{50} \rightarrow \text{i}\textbf{52}]/[\text{i}\textbf{51} \rightarrow \text{i}\textbf{53}] \\ & /[\text{i}\textbf{48} \rightarrow \text{i}\textbf{60}] \rightarrow \text{i}\textbf{66} \rightarrow [\text{i}\textbf{67}]/[\text{i}\textbf{67} \rightarrow \text{i}\textbf{68}] \rightarrow \text{p}\textbf{30} \\ & + \text{H} \end{split} \tag{19}$$

$$CH + CH_{3}CHCCH_{2} \rightarrow [i50 \rightarrow i52]/[i51 \rightarrow i53]$$
$$/[i48 \rightarrow i60] \rightarrow i66 \rightarrow i71 \rightarrow p30 + H$$
(20)

$$\begin{array}{l} \mathrm{CH} + \mathrm{CH}_{3}\mathrm{CH}\mathrm{CCH}_{2} \rightarrow [\mathbf{i50}]/[\mathbf{i51}] \rightarrow \mathbf{i65} \rightarrow \mathbf{i71} \\ \\ \rightarrow \mathbf{p30} + \mathrm{H} \end{array} \tag{21}$$

In summary, considering the experimentally derived reaction energy of -190 ± 21 kJ mol⁻¹, together with elimination of isomerization processes with high barriers of over 200 kJ mol⁻¹, 1-vinyl-cyclopropene conformers (p5 and p26), 3ethylidenecyclopropene (p16), 1-methyl-3-methylenecyclopropene (p28), and 1,2-bis(methylene)cyclopropane (p29) along with atomic hydrogen are likely formed under our experimental conditions (Figure 5). The product p5 can be formed via pathway 1; p16 may be reached via pathway 5; p26 can be accessed through pathway 9; p28 may be formed via pathway 16, whereas p29 can be generated through pathway 18. Note that the pathways 1, 5, and 9 leading to p5, p16, and p26 are accessed via the barrierless addition of the CH radical to the terminal C=C bond of 1,2-butadiene, whereas pathways 16 and 18 generating p28 and p29 are reached via a barrierless addition of the methylidyne radical to the central C=C bond. Recall that the best fit center-of-mass angular

5. CONCLUSION

distribution peaked at 90° (sideways scattering) suggesting that the dominating decomposition pathway of the C₅H₇ intermediate involves a hydrogen atom which is ejected perpendicularly to the rotational plane of the decomposing complex. The computed geometries of the exit transition states lead to p5, p16, p26, p28 and p29 connecting the intermediates to these products via pathways 1, 5, 9, 16, and 18 can account for the sideways scattering (Figure 6). Among them, the transition states for $i48 \rightarrow p5$ and $i49 \rightarrow p26$ with the hydrogen atom ejected at angles of 76.3° and 75.8° , which are closest to 90°, suggest that p5 and p26 are the most likely products formed under our experimental conditions via pathways 1 and 9, respectively, with the hydrogen atom emission from the methyl group of 1,2-butadiene. Note that our data suggest a rather tight exit transition state leading to C_5H_6 isomer(s). This can be accounted for with the formation of p26, p28, and p29. Consequently, pathways leading to p5 and p26 fulfill the requirement of a tight exit transition state, a hydrogen loss perpendicular to the rotation plane of the decomposing complex, and the experimentally derived reaction energy. However, considering the low frequency bending modes of the C-H bond involved in the decomposing intermediate leading to p28 and p29, these products cannot be entirely dismissed since these vibrations could average out to a hydrogen loss perpendicular to the rotation plane of the decomposing complex.

Finally, we explored the yields of the individual products p1-p37 using statistical RRKM theory (Table 2) at $E_c = 20.6$ kJ mol⁻¹ within the zero-pressure limit. RRKM predicts, in the case of the methylidyne radical addition to the terminal C=Cdouble bond of 1,2-butadiene, vinylacetylene (p23) along with the methyl radical to be the most likely product (90.6%) (see Figure S5), whereas 1-vinylcyclopropenes (p5 and p26), 1penten-3-yne (p8), and 3-ethylidenecyclopropene (p16) are minor products (<4% each); (Z)-3-penten-1-yne (p9, 35.2%) and (E)-3-penten-1-yne (p15, 36.9%) are the main products via methylidyne radical addition to the central C-C double bond of 1,2-butadiene along with cyclopentadiene (p1), trans-1,2,4-pentatriene (p2) and cis-1,2,4-pentatriene (p3) being minor products (<10% each). Entrance channels involving methylidyne insertions into various C-H bonds in 1,2butadiene may results in somewhat different statistical product distributions (Table 2) but those are expected to be much less likely than methylidyne addition to the C=C double bonds. The significant difference between our experimental results under single-collision conditions and RRKM calculations indicates a non-RRKM behavior of this bimolecular reaction yielding at least two conformers of 1-vinylcyclopropene (p5 and p26) with a lifetime of the initial addition adducts i48/i49 not long enough to allow energy randomization to occur. A similar behavior was also revealed in the bimolecular reactions of the CH radical with 1,3-butadiene.⁴⁰ Here, the CH radical added barrierlessly to the C=C bond of 1,3-butadiene eventually leading to the cyclic cis- and trans-3-vinyl-cyclopropene conformers ($\Delta_r G = -119 \text{ kJ mol}^{-1}$) with H loss from the terminal CH₂ group of the 1,3-butadiene reactant via exit transition states lying 5-33 kJ mol⁻¹ above the separated products. Thus, for both reactions, a dynamically preferable scenario of methylidyne addition to a double C=C followed by immediate hydrogen atom loss is fulfilled rather than the statistically favored (multistep) isomerization followed by fragmentation.

The crossed molecular beam reactions of the methylidyne radical (CH; $X^{2}\Pi$) with 1,2-butadiene (CH₂CCHCH₃; $X^{1}A'$) were studied at collision energies of about 21 kJ mol⁻¹. Combining our experimental data with the doublet C₅H₇ PES, the CH radical may add barrierlessly to the carbon-carbon double bonds of 1,2-butadiene yielding cyclic doublet C5H7 intermediates; these collision complexes are suggested to undergo nonstatistical, unimolecular decomposition via hydrogen atom loss from the 1,2-butadiene reactant yielding the cyclic 1-vinyl-cyclopropene conformers (p5 and p26; $\Delta_r G =$ -192 and -202 kJ mol⁻¹, respectively), 1-methyl-3-methylenecyclopropene (p28; $\Delta_r G = -196$ kJ mol⁻¹), and/or 1,2bis(methylene)cyclopropane (**p29**; $\Delta_r G = -211$ kJ mol⁻¹); the overall reaction exoergicity was determined to be -190 ± 21 kJ mol⁻¹. The CH radical addition to the terminal carboncarbon double bond of 1,2-butadiene leads to three-member cyclic C₅H₇ intermediates i48, and/or i49. The decomposition of both intermediates results in 1-vinylcyclopropene conformers (p5 and p26; $\Delta_r G = -192$ and -202 kJ mol⁻¹, respectively) via hydrogen atom emission from the CH₃ group. The CH radical addition to the central C=C bond of 1,2butadiene generates three-member cyclic C₅H₇ intermediates i50, and/or i51; the decomposition of intermediates i50 and/ or i51 produces 1-methyl-3-methylenecyclopropene (p28; $\Delta_r G$ = -196 kJ mol^{-1}) via H loss from the CH group of the 1,2butadiene reactant via a tight exit transition state. A hydrogen atom shift from the methyl group to the nonadjacent methylidyne group in i50 and i51 may lead to the intermediates i52 and i53, respectively; the decomposition of i52 and/or i53 yields 1,2-bis(methylene)cyclopropane (p29; $\Delta_r G = -211 \text{ kJ mol}^{-1}$ via atomic hydrogen emission from the CH moiety of 1,2-butadiene reactant. Considering the barrierless nature of the reaction, these cyclic C₅H₆ molecule can be synthesized even in cold regions of the interstellar medium such as the Taurus Molecular Cloud (TMC-1). Furthermore, in high-temperature settings such as combustion flames and circumstellar envelopes of carbon stars, cyclic C₅H₆ isomers with a three-member ring might easily undergo hydrogen-assisted isomerization to the cyclopentadiene (c- C_5H_6), followed by hydrogen abstraction/loss and ultimately yielding the cyclopentadienyl radical (c-C₅H₅), which is believed to be a key precursor to PAHs and carbonaceous nanoparticles.33,83

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpca.0c08731.

Discussion of the formation pathways of products p12, p13, and p17-p22 (Figures S1 and S2), products p1p3, p9, and p15 (Figure S3), products p4, p6, p7, p11, p16, p33, p36, and p37 (Figure S4), and products p22p24 and p31-p35 (Figure S5), rate constants (Table S1), and optimized Cartesian coordinates and calculated vibrational frequencies of the reactants, products, intermediates, and transition states (PDF)

AUTHOR INFORMATION

Corresponding Authors

Ralf I. Kaiser – Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States;

pubs.acs.org/JPCA

o orcid.org/0000-0002-7233-7206; Email: ralfk@hawaii.edu

Alexander M. Mebel – Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States; orcid.org/0000-0002-7233-3133; Email: mebela@fu.edu

Authors

- **Chao He** Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
- Anatoliy A. Nikolayev Samara National Research University, Samara 443086, Russian Federation
- Long Zhao Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
- Aaron M. Thomas Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States; orcid.org/0000-0001-8540-9523
- Srinivas Doddipatla Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
- Galiya R. Galimova Samara National Research University, Samara 443086, Russian Federation; Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Valeriy N. Azyazov Samara National Research University, Samara 443086, Russian Federation; Lebedev Physical Institute, Samara 443011, Russian Federation

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpca.0c08731

Author Contributions

[⊥]C.H. and A.A.N. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, Basic Energy Sciences Grants DE-FG02-03ER15411 and DE-FG02-04ER15570 to the University of Hawaii and to Florida International University, respectively. Ab initio calculations at Samara University were supported by the Ministry of Science and Higher Education of the Russian Federation under Grant No. 14.Y26.31.0020.

REFERENCES

(1) Gredel, R. Interstellar C_2 Absorption Lines Towards CH⁺ Forming Regions. Astron. Astrophys. **1999**, 351, 657–668.

(2) Tielens, A. G. G. M. Interstellar Polycyclic Aromatic Hydrocarbon Molecules. *Annu. Rev. Astron. Astrophys.* 2008, 46, 289–337.

(3) Ehrenfreund, P.; Sephton, M. A. Carbon Molecules in Space: from Astrochemistry to Astrobiology. *Faraday Discuss.* **2006**, *133*, 277–288.

(4) Eaves, N. A.; Dworkin, S. B.; Thomson, M. J. Assessing Relative Contributions of PAHs to Soot Mass by Reversible Heterogeneous Nucleation and Condensation. *Proc. Combust. Inst.* **2017**, *36*, 935–945.

(5) Jones, B. M.; Zhang, F.; Kaiser, R. I.; Jamal, A.; Mebel, A. M.; Cordiner, M. A.; Charnley, S. B. Formation of Benzene in the Interstellar Medium. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*, 452– 457.

(6) Mebel, A. M.; Landera, A.; Kaiser, R. I. Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames. *J. Phys. Chem. A* **2017**, *121*, 901–926.

(7) Kaiser, R. I.; Parker, D. S. N.; Mebel, A. M. Reaction Dynamics in Astrochemistry: Low-Temperature Pathways to Polycyclic Aromatic Hydrocarbons in the Interstellar Medium. Annu. Rev. Phys. Chem. 2015, 66, 43–67.

(8) Steglich, M.; Bouwman, J.; Huisken, F.; Henning, T. Can Neutral and Ionized Polycyclic Aromatic Hydrocarbons be Carriers of the Ultraviolet Extinction Bump and the Diffuse Interstellar Bands? *Astrophys. J.* **2011**, 742, 2–12.

(9) Zenobi, R.; Philippoz, J.-M.; Zare, R. N.; Wing, M. R.; Bada, J. L.; Marti, K. Organic Compounds in the Forest Vale, H4 Ordinary Chondrite. *Geochim. Cosmochim. Acta* **1992**, *56*, 2899–2905.

(10) Busby, W. F., Jr; Stevens, E. K.; Kellenbach, E. R.; Cornelisse, J.; Lugtenburg, J. Dose-Response Relationships of the Tumorigenicity of Cyclopenta[*cd*]pyrene, Benzo[*a*]pyrene and 6-Nitrochrysene in a Newborn Mouse Lung Adenoma Bioassay. *Carcinogenesis* **1988**, *9*, 741–746.

(11) Kim, K.-H.; Jahan, S. A.; Kabir, E.; Brown, R. J. C. A Review of Airborne Polycyclic Aromatic Hydrocarbons (PAHs) and Their Human Health Effects. *Environ. Int.* **2013**, *60*, 71–80.

(12) Durant, J. L.; Busby, W. F., Jr; Lafleur, A. L.; Penman, B. W.; Crespi, C. L. Human Cell Mutagenicity of Oxygenated, Nitrated and Unsubstituted Polycyclic Aromatic Hydrocarbons Associated with Urban Aerosols. *Mutat. Res., Genet. Toxicol. Test.* **1996**, 371, 123–157.

(13) Zhao, L.; Kaiser, R. I.; Xu, B.; Ablikim, U.; Ahmed, M.; Evseev, M. M.; Bashkirov, E. K.; Azyazov, V. N.; Mebel, A. M. Low-Temperature Formation of Polycyclic Aromatic Hydrocarbons in Titan's Atmosphere. *Nat. Astron.* **2018**, *2*, 973–979.

(14) Tielens, A. G. G. M. The Molecular Universe. *Rev. Mod. Phys.* 2013, 85, 1021–1081.

(15) Gilmour, I.; Pillinger, C. T. Isotopic Compositions of Individual Polycyclic Aromatic Hydrocarbons from the Murchison Meteorite. *Mon. Not. R. Astron. Soc.* **1994**, 269, 235–240.

(16) Naraoka, H.; Shimoyama, A.; Harada, K. Isotopic Evidence from an Antarctic Carbonaceous Chondrite for Two Reaction Pathways of Extraterrestrial PAH Formation. *Earth Planet. Sci. Lett.* **2000**, *184*, 1–7.

(17) Zhang, F.; Gu, X.; Guo, Y.; Kaiser, R. I. Reaction Dynamics on the Formation of Styrene: A Crossed Molecular Beam Study of the Reaction of Phenyl Radicals with Ethylene. *J. Org. Chem.* **2007**, *72*, 7597–7604.

(18) Landera, A.; Kaiser, R. I.; Mebel, A. M. Addition of One and Two Units of C_2H to Styrene: A Theoretical Study of the $C_{10}H_9$ and $C_{12}H_9$ Systems and Implications Toward Growth of Polycyclic Aromatic Hydrocarbons at Low Temperatures. *J. Chem. Phys.* **2011**, 134, 024302.

(19) Zhao, L.; Kaiser, R. I.; Lu, W.; Ahmed, M.; Evseev, M. M.; Bashkirov, E. K.; Azyazov, V. N.; Tönshoff, C.; Reicherter, F.; Bettinger, H. F.; et al. A Free-Radical Prompted Barrierless Gas-Phase Synthesis of Pentacene. *Angew. Chem., Int. Ed.* **2020**, *59*, 11334– 11338.

(20) He, C.; Thomas, A. M.; Galimova, G. R.; Morozov, A. N.; Mebel, A. M.; Kaiser, R. I. Gas-Phase Formation of Fulvenallene (C_7H_6) via the Jahn-Teller Distorted Tropyl (C_7H_7) Radical Intermediate under Single-Collision Conditions. J. Am. Chem. Soc. **2020**, 142, 3205–3213.

(21) Thomas, A. M.; Doddipatla, S.; Kaiser, R. I.; Galimova, G. R.; Mebel, A. M. A Barrierless Pathway Accessing the C_9H_9 and C_9H_8 Potential Energy Surfaces via the Elementary Reaction of Benzene with 1-Propynyl. *Sci. Rep.* **2019**, *9*, 17595.

(22) Lucas, M.; Thomas, A. M.; Zhao, L.; Kaiser, R. I.; Kim, G. S.; Mebel, A. M. Gas-Phase Synthesis of the Elusive Cyclooctatetraenyl Radical (C_8H_7) via Triplet Aromatic Cyclooctatetraene (C_8H_8) and Non-Aromatic Cyclooctatriene (C_8H_8) Intermediates. *Angew. Chem., Int. Ed.* **2017**, *56*, 13655–13660.

(23) Yang, T.; Kaiser, R. I.; Troy, T. P.; Xu, B.; Kostko, O.; Ahmed, M.; Mebel, A. M.; Zagidullin, M. V.; Azyazov, V. N. HACA's Heritage: A Free-Radical Pathway to Phenanthrene in Circumstellar Envelopes of Asymptotic Giant Branch Stars. *Angew. Chem., Int. Ed.* **2017**, *56*, 4515–4519.

(24) Baroncelli, M.; Mao, Q.; Galle, S.; Hansen, N.; Pitsch, H. Role of Ring-Enlargement Reactions in the Formation of Aromatic Hydrocarbons. *Phys. Chem. Chem. Phys.* **2020**, *22*, 4699–4714.

(25) McEnally, C. S.; Pfefferle, L. D.; Atakan, B.; Kohse-Höinghaus, K. Studies of Aromatic Hydrocarbon Formation Mechanisms in Flames: Progress towards Closing the Fuel Gap. *Prog. Energy Combust. Sci.* **2006**, *32*, 247–294.

(26) Johansson, K. O.; Head-Gordon, M. P.; Schrader, P. E.; Wilson, K. R.; Michelsen, H. A. Resonance-Stabilized Hydrocarbon-Radical Chain Reactions may Explain Soot Inception and Growth. *Science* **2018**, *361*, 997–1000.

(27) Melius, C. F.; Colvin, M. E.; Marinov, N. M.; Pit, W. J.; Senkan, S. M. Reaction Mechanisms in Aromatic Hydrocarbon Formation involving the C_5H_5 Cyclopentadienyl Moiety. *Symp. (Int.) Combust.,* [*Proc.*] **1996**, *26*, 685–692.

(28) Moskaleva, L. V.; Mebel, A. M.; Lin, M. C. The $CH_3 + C_5H_5$ Reaction: A Potential Source of Benene at High Temperatures. *Symp.* (*Int.*) *Combust.*, [*Proc.*] **1996**, *26*, 521–526.

(29) Fascella, S.; Cavallotti, C.; Rota, R.; Carrà, S. The Peculiar Kinetics of the Reaction between Acetylene and the Cyclopentadienyl Radical. *J. Phys. Chem. A* **2005**, *109*, 7546–7557.

(30) Savee, J. D.; Selby, T. M.; Welz, O.; Taatjes, C. A.; Osborn, D. L. Time- and Isomer-Resolved Measurements of Sequential Addition of Acetylene to the Propargyl Radical. *J. Phys. Chem. Lett.* **2015**, *6*, 4153–4158.

(31) Sharma, S.; Harper, M. R.; Green, W. H. Modeling of 1,3-Hexadiene, 2,4-Hexadiene and 1,4-Hexadiene-Doped Methane Flames: Flame Modeling, Benzene and Styrene Formation. *Combust. Flame* **2010**, *157*, 1331–1345.

(32) Mebel, A. M.; Kislov, V. V. Can the $C_5H_5 + C_5H_5 \rightarrow C_{10}H_{10} \rightarrow C_{10}H_9 + H/C_{10}H_8 + H_2$ Reaction Produce Naphthalene? An Ab Initio/RRKM Study. J. Phys. Chem. A **2009**, 113, 9825–9833.

(33) Wang, D.; Violi, A.; Kim, D. H.; Mullholland, J. A. Formation of Naphthalene, Indene, and Benzene from Cyclopentadiene Pyrolysis: A DFT Study. J. Phys. Chem. A 2006, 110, 4719–4725.

(34) Cavallotti, C.; Polino, D. On the Kinetics of the $C_5H_5 + C_5H_5$ Reaction. *Proc. Combust. Inst.* **2013**, 34, 557–564.

(35) Cavallotti, C.; Polino, D.; Frassoldati, A.; Ranzi, E. Analysis of Some Reaction Pathways Active during Cyclopentadiene Pyrolysis. *J. Phys. Chem. A* **2012**, *116*, 3313–3324.

(36) Kislov, V. V.; Mebel, A. M. The Formation of Naphthalene, Azulene, and Fulvalene from Cyclic C_5 Species in Combustion: An Ab Initio/RRKM Study of 9-H-Fulvalenyl ($C_5H_5-C_5H_4$) Radical Rearrangements. J. Phys. Chem. A 2007, 111, 9532–9543.

(37) Benson, S. W. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters; Wiley: New York, NY, 1968.

(38) Pincock, J. A.; Boyd, R. J. Thermal and Photochemical Reactivity of Cyclopropene Derivatives: a Semi-empirical Molecular Orbital Study. *Can. J. Chem.* **1977**, *55*, 2482–2491.

(39) Billups, W. E.; Lin, L.-J. Uses of Adsorbed Reagents in the Synthesis of Reactive Molecules via Elimination Reactions. *Tetrahedron* **1986**, *42*, 1575–1579.

(40) Bloch, R.; Le Perchec, P.; Conia, J. M. Dimethylenecyclopropane. *Angew. Chem., Int. Ed. Engl.* **1970**, *9*, 798–799.

(41) Hansen, N.; Klippenstein, S. J.; Miller, J. A.; Wang, J.; Cool, T. A.; Law, M. E.; Westmoreland, P. R.; Kasper, T.; Kohse-Höinghaus, K. Identification of C_3H_x Isomers in Fuel-Rich Flames by Photoionization Mass Spectrometry and Electronic Structure Calculations. *J. Phys. Chem. A* **2006**, *110*, 4376–4388.

(42) Gong, C.-M.; Ning, H.-B.; Li, Z.-R.; Li, X.-Y. Theoretical and Kinetic Study of Reaction $C_2H + C_3H_6$ on the C_5H_7 Potential Energy Surface. *Theor. Chem. Acc.* **2015**, *134*, 1599.

(43) He, C.; Zhao, L.; Thomas, A. M.; Galimova, G. R.; Mebel, A. M.; Kaiser, R. I. A Combined Experimental and Computational Study on the Reaction Dynamics of the 1-Propynyl Radical (CH₃CC; X^2A_1) with Ethylene (H₂CCH₂; X^1A_{1g}) and the Formation of 1-Penten-3-yne (CH₂CHCCCH₃; $X^1A'_1$). *Phys. Chem. Chem. Phys.* **2019**, *21*, 22308–22319.

(44) He, C.; Zhao, L.; Doddipatla, S.; Thomas, A. M.; Nikolayev, A. A.; Galimova, G. R.; Azyazov, V. N.; Mebel, A. M.; Kaiser, R. I. Gas-Phase Synthesis of 3-Vinylcyclopropene via the Crossed Beam Reaction of the Methylidyne Radical (CH; $X^2\Pi$) with 1,3-Butadiene (CH₂CHCHCH₂; X^1A_g). *ChemPhysChem* **2020**, *21*, 1295–1309.

(45) Kaiser, R. I.; Balucani, N. The Formation of Nitriles in Hydrocarbon-Rich Atmospheres of Planets and Their Satellites: Laboratory Investigations by the Crossed Molecular Beam Technique. *Acc. Chem. Res.* 2001, *34*, 699–706.

(46) Guo, Y.; Gu, X.; Kawamura, E.; Kaiser, R. I. Design of a Modular and Versatile Interlock System for Ultrahigh Vacuum Machines: A Crossed Molecular Beam Setup as a Case Study. *Rev. Sci. Instrum.* **2006**, *77*, 034701.

(47) Kaiser, R. I.; Ting, J. W.; Huang, L. C. L.; Balucani, N.; Asvany, O.; Lee, Y. T.; Chan, H.; Stranges, D.; Gee, D. A Versatile Source to Produce High-Intensity, Pulsed Supersonic Radical Beams for Crossed-Beam Experiments: The Cyanogen Radical CN $(X^2 \Sigma^+)$ as a case study. *Rev. Sci. Instrum.* **1999**, *70*, 4185–4191.

(48) Balucani, N.; Asvany, O.; Chang, A. H. H.; Lin, S. H.; Lee, Y. T.; Kaiser, R. I.; Bettinger, H. F.; Schleyer, P. v. R.; Schaefer, H. F., III Crossed Beam Reaction of Cyano Radicals with Hydrocarbon Molecules. I. Chemical Dynamics of Cyanobenzene (C_6H_5CN ; X^1A_1) and Perdeutero Cyanobenzene (C_6D_5CN ; X^1A_1) Formation from Reaction of $CN(X^2\Sigma^+)$ with Benzene C_6H_6 (X^1A_{1g}), and d_6 -Benzene C_6D_6 (X^1A_{1g}). J. Chem. Phys. **1999**, 111, 7457–7471.

(49) Balucani, N.; Asvany, O.; Chang, A. H. H.; Lin, S. H.; Lee, Y. T.; Kaiser, R. I.; Bettinger, H. F.; Schleyer, P. v. R.; Schaefer, H. F., III Crossed Beam Reaction of Cyano Radicals with Hydrocarbon Molecules. II. Chemical Dynamics of 1-Cyano-1-Methylallene (CNCH₃CCCH₂; X¹A') Formation from Reaction of CN(X² Σ^+) with Dimethylacetylene CH₃CCCH₃ (X¹A₁'). *J. Chem. Phys.* **1999**, *111*, 7472–7479.

(50) Jefferts, K. B.; Penzias, A. A.; Wilson, R. W. Observation of the CN Radical in the Orion Nebula and W51. *Astrophys. J.* **1970**, *161*, L87–L89.

(51) Kaiser, R. I.; Lee, Y. T.; Suits, A. G. Crossed-Beam Reaction of $C({}^{3}P_{j})$ with $C_{2}H_{2}({}^{1}\Sigma^{+}_{g})$: Observation of Tricarbon-Hydride $C_{3}H$. *J. Chem. Phys.* **1995**, *103*, 10395–10398.

(52) Stahl, F.; von Ragué Schleyer, P.; Bettinger, H. F.; Kaiser, R. I.; Lee, Y. T.; Schaefer, H. F., III Reaction of the Ethynyl Radical, C_2H , with Methylacetylene, CH₃CCH, under Single Collision Conditions: Implications for Astrochemistry. *J. Chem. Phys.* **2001**, *114*, 3476– 3487.

(53) Kaiser, R. I.; Mebel, A. M.; Lee, Y. T. Chemical Dynamics of Cyclopropynylidyne (*c*-C₃H; X^2B_2) Formation from the Reaction of C(¹D) with Acetylene, C₂H₂ ($X^1\Sigma_g^+$). *J. Chem. Phys.* **2001**, *114*, 231–239.

(54) Kaiser, R. I.; Maksyutenko, P.; Ennis, C.; Zhang, F.; Gu, X.; Krishtal, S. P.; Mebel, A. M.; Kostko, O.; Ahmed, M. Untangling the Chemical Evolution of Titan's Atmosphere and Surface-from Homogeneous to Heterogeneous Chemistry. *Faraday Discuss.* **2010**, 147, 429–478.

(55) Thomas, A. M.; Zhao, L.; He, C.; Galimova, G. R.; Mebel, A. M.; Kaiser, R. I. Directed Gas-Phase Synthesis of Triafulvene under Single-Collision Conditions. *Angew. Chem., Int. Ed.* **2019**, *58*, 15488–15495.

(56) He, C.; Thomas, A. M.; Galimova, G. R.; Mebel, A. M.; Kaiser, R. I. Gas-Phase Formation of 1-Methylcyclopropene and 3-Methylcyclopropene via the Reaction of the Methylidyne Radical (CH; $X^2\Pi$) with Propylene (CH₃CHCH₂; X^1A'). J. Phys. Chem. A **2019**, 123, 10543–10555.

(57) Brink, G. O. Electron Bombardment Molecular Beam Detector. *Rev. Sci. Instrum.* **1966**, *37*, 857–860.

(58) Daly, N. R. Scintillation Type Mass Spectrometer Ion Detector. *Rev. Sci. Instrum.* **1960**, *31*, 264–267.

(59) Kaiser, R. I.; Lee, Y. T.; Suits, A. G. Crossed-beam Reaction of Carbon Atoms with Hydrocarbon Molecules. I. Chemical Dynamics of the Propargyl Radical Formation, C_3H_3 (X^2B_2), from Reaction of

 $C({}^{3}P_{j})$ with Ethylene, $C_{2}H_{4}(X^{1}A_{g})$. J. Chem. Phys. **1996**, 105, 8705–8720.

(60) Kaiser, R. I.; Stranges, D.; Lee, Y. T.; Suits, A. G. Crossed-beam Reaction of Carbon Atoms with Hydrocarbon Molecules. II. Chemical Dynamics of n-C₄H₃ Formation from Reaction of $C({}^{3}P_{j})$ with Methylacetylene, CH₃CCH ($X^{1}A_{1}$). J. Chem. Phys. **1996**, 105, 8721–8733.

(61) Weiss, P. S. The Reactions of Ground and Excited State Sodium Atoms with Hydrogen Halide Molecules. Ph. D. Dissertation Thesis, University of California: Berkeley, CA, 1986.

(62) Vernon, M. F. *Molecular Beam Scattering*. Ph.D. Dissertation Thesis, University of California: Berkeley, CA, 1983.

(63) Kaiser, R. I.; Ochsenfeld, C.; Stranges, D.; Head-Gordon, M.; Lee, Y. T. Combined Crossed Molecular Beams and *Ab Initio* Investigation of the Formation of Carbon-bearing Molecules in the Interstellar Medium via Neutral–Neutral Reactions. *Faraday Discuss.* **1998**, *109*, 183–204.

(64) Gu, X.; Guo, Y.; Zhang, F.; Mebel, A. M.; Kaiser, R. I. Reaction Dynamics of Carbon-bearing Radicals in Circumstellar Envelopes of Carbon Stars. *Faraday Discuss.* **2006**, *133*, 245–275.

(65) Mebel, A. M.; Kaiser, R. I. Formation of Resonantly Stabilised Free Radicals via the Reactions of Atomic Carbon, Dicarbon, and Tricarbon with Unsaturated Hydrocarbons: Theory and Crossed Molecular Beams Experiments. *Int. Rev. Phys. Chem.* **2015**, *34*, 461– 514.

(66) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. **1993**, 98, 5648-5652.

(67) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1988**, 37, 785–789.

(68) Adler, T. B.; Knizia, G.; Werner, H.-J. A Simple and Efficient CCSD(T)-F12 Approximation. J. Chem. Phys. 2007, 127, 221106.

(69) Knizia, G.; Adler, T. B.; Werner, H.-J. Simplified CCSD(T)-F12 Methods: Theory and Benchmarks. J. Chem. Phys. 2009, 130, 054104.

(70) Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Schütz, M.; Celani, P.; Korona, T.; Rauhut, G.; Amos, R. D.; Bernhardsson, A. *MOLPRO, Version 2010.1, A Package of Ab Initio Programs*; University of Cardiff: Cardiff: U.K., 2010.

(71) Dunning, T. H., Jr Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. **1989**, *90*, 1007–1023.

(72) Zhang, J.; Valeev, E. F. Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupledcluster Nethods: a Basis Set Assessment. J. Chem. Theory Comput. 2012, 8, 3175–3186.

(73) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. *Gaussian 09*, Rev. A.1; Gaussian Inc.: Wallingford, CT, 2009.

(74) Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics. Prentice Hall: Englewood Cliffs, NJ, 1982; Vol. 3.

(75) Eyring, H.; Lin, S. H.; Lin, S. M. Basic Chemical Kinetics; John Wiley and Sons, Inc.: New York, 1980.

(76) Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions.; Wiley: New York, 1972.

(77) He, C.; Zhao, L.; Thomas, A. M.; Morozov, A. N.; Mebel, A. M.; Kaiser, R. I. Elucidating the Chemical Dynamics of the Elementary Reactions of the 1-Propynyl Radical (CH₃CC; X^2A_1) with Methylacetylene (H₃CCCH; X^1A_1) and Allene (H₂CCCH₂; X^1A_1). J. Phys. Chem. A **2019**, 123, 5446–5462.

(78) Kislov, V. V.; Nguyen, T. L.; Mebel, A. M.; Lin, S. H.; Smith, S. C. Photodissociation of Benzene under Collision-free Conditions: An Ab Initio/Rice–Ramsperger–Kassel–Marcus Study. *J. Chem. Phys.* **2004**, *120*, 7008–7017.

(79) Levine, R. D.; Bernstein, R. B.; Lee, Y. T. Molecular Reaction Dynamics and Chemical Reactivity. *Phys. Today* **1988**, *41*, 90–92.

(80) Levine, R. D. *Molecular Reaction Dynamics*; Cambridge University Press: Cambridge, U.K., 2005.

(81) Herschbach, D. R. Reactive Collisions in Crossed Molecular Beams. *Discuss. Faraday Soc.* **1962**, 33, 149–161.

(82) Miller, W. B.; Safron, S. A.; Herschbach, D. R. Exchange Reactions of Alkali Atoms with Alkali Halides: A Collision Complex Mechanism. *Discuss. Faraday Soc.* **1967**, *44*, 108–122.

(83) Djokic, M. R.; Van Geem, K. M.; Cavallotti, C.; Frassoldati, A.; Ranzi, E.; Marin, G. B. An Experimental and Kinetic Modeling Study of Cyclopentadiene Pyrolysis: First Growth of Polycyclic Aromatic Hydrocarbons. *Combust. Flame* **2014**, *161*, 2739–2751.