Directed Gas Phase Formation of the Elusive Silylgermylidyne Radical (H₃SiGe, X²A'')

Dr. Zhenghai Yang, Dr. Srinivas Doddipatla, Prof. Dr. Ralf I. Kaiser* Department of Chemistry, University of Hawaii, Honolulu, HI, 96822, USA

Vladislav S. Krasnoukhov, Prof. Dr. Valeriy N. Azyazov Samara National Research University, Samara 443086 and Lebedev Physical Institute, Samara 443011, Russian Federation

Prof. Dr. Alexander M. Mebel* Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199

* ralfk@hawaii.edu, mebela@fiu.edu

Supplementary Information - Results

It should be noted that according to the isotopes of silicon and germanium (Table S2), the laboratory data can also be fit with reactions of ²⁸SiH plus ⁷³GeH₄, ²⁸SiH plus ⁷²GeH₄, and ²⁹SiH plus ⁷⁰GeH₄ leading to ⁷³Ge²⁸SiH₃ plus molecular hydrogen, ⁷²Ge²⁸SiH₃ plus molecular hydrogen, and ⁷⁰Ge²⁹SiH₃ plus molecular hydrogen. These fits are shown in Figures S2 and S3 for completeness. With the exception of the center-of-mass angular distribution of the ²⁹SiH plus ⁷⁰GeH₄ system, the CM functions are essentially identical to those obtained for the ²⁸SiH plus ⁷⁴GeH₄ system which accounts for the dominating naturally occurring isotopes of silicon and germanium.

beam	v _p (m s ⁻¹)	S	E _c (kJ mol ⁻¹)	Θ _{CM} (deg)
SiH	1744 ± 11	16.7 ± 1.8		
GeH ₄	529 ± 5	9.0 ± 0.7	35.0 ± 0.4	39.2 ± 0.2

Table S1. Peak Velocity (v_p) and Speed Ratios (S) of the Silylidyne (SiH) and Germane (GeH₄) Beams along with the Corresponding Collision Energy (E_C) and Center-of-Mass Angle Θ_{CM} .

Table S2. H and H_2 dissociation products from silvlidyne radical (SiH) + germane (GeH₄) reaction with isotopes of germanium and silicon.

		⁷⁰ GeH ₄	72 GeH ₄	⁷³ GeH ₄	⁷⁴ GeH ₄	⁷⁶ GeH ₄
		(20.52%)	(27.45%)	(7.76%)	(36.7%)	(7.75%)
H loss	²⁸ SiH	²⁸ Si ⁷⁰ GeH ₄	²⁸ Si ⁷² GeH ₄	²⁸ Si ⁷³ GeH ₄	²⁸ Si ⁷⁴ GeH ₄	²⁸ Si ⁷⁶ GeH ₄
	(92.2%)	102	104	105	106	108
	²⁹ SiH	²⁹ Si ⁷⁰ GeH ₄	²⁹ Si ⁷² GeH ₄	²⁹ Si ⁷³ GeH ₄	²⁹ Si ⁷⁴ GeH ₄	²⁹ Si ⁷⁶ GeH ₄
	(4.7%)	103	105	106	107	109
	³⁰ SiH	³⁰ Si ⁷⁰ GeH ₄	³⁰ Si ⁷² GeH ₄	³⁰ Si ⁷³ GeH ₄	³⁰ Si ⁷⁴ GeH ₄	³⁰ Si ⁷⁶ GeH ₄
	(3.1%)	104	106	107	108	110
H ₂ loss	²⁸ SiH	²⁸ Si ⁷⁰ GeH ₃	²⁸ Si ⁷² GeH ₃	²⁸ Si ⁷³ GeH ₃	²⁸ Si ⁷⁴ GeH ₃	²⁸ Si ⁷⁶ GeH ₃
	(92.2%)	101	103	104	105	107
	²⁹ SiH	²⁹ Si ⁷⁰ GeH ₃	²⁹ Si ⁷² GeH ₃	²⁹ Si ⁷³ GeH ₃	²⁹ Si ⁷⁴ GeH ₃	²⁹ Si ⁷⁶ GeH ₃
	(4.7%)	102	104	105	106	108
	³⁰ SiH	³⁰ Si ⁷⁰ GeH ₃	³⁰ Si ⁷² GeH ₃	³⁰ Si ⁷³ GeH ₃	³⁰ Si ⁷⁴ GeH ₃	³⁰ Si ⁷⁶ GeH ₃
	(3.1%)	103	105	106	107	109

Table S3. Optimized Cartesian coordinates (Å), and vibrational frequencies(cm⁻¹) of reactants, H and H₂ dissociation products, intermediates, transition states from silylidyne radical (SiH) + germane (GeH₄) reaction.

Creation	Vibrational Frequencies	Cartesian Coordinates (Å)		
Species	(cm ⁻¹)	Atom	X Y Z	
n1		Ge	-0.883917 0.000000 -0.003735	
P	P1	Si	1.569751 0.000000 -0.007234	
Q.	273.77, 530.71, 570.09	Н	2.202675 1.199640 -0.613371	
	8/5.58, 928.05, 964./1	Н	2.202667 -1.199706 -0.613250	
	2182.03, 2215.21, 2219.01	Н	1.903503 0.000072 1.447423	
C				
p2		Ge	0.807081 -0.046575 0.000003	
1	229.17, 358.79, 376.12	Si	-1.551397 0.000963 -0.000149	
6 9	392.70, 661.71, 974.82	Н	0.764983 1.538757 0.000483	
	1945.71, 2207.50, 2230.78	Н	-2.392422 -1.223837 0.001046	
		Н	-2.479584 1.161996 0.000467	
C				
		Н	-0.575022 0.172811 1.249557	
p3	317.30, 363.63, 617.66	Si	-1.577961 0.119898 -0.069943	
	652.58, 700.89, 984.56	Ge	0.738761 -0.063911 -0.019293	
	1512.90, 1991.99, 2118.80	Н	-2.085856 -1.264444 0.236541	
		Н	1.111988 1.458206 0.110481	
p4	164.74, 363.36, 372.30 376.83, 706.43, 900.00 2055.35, 2117.44, 2143.75	Ge	0.680536 0.000790 0.000018	
		Si	-1.663519 -0.101911 -0.000028	
		Н	1.614265 1.224456 -0.000351	
		Н	1.586156 -1.242449 -0.000053	
		Н	-1.688322 1.419463 0.000228	
۵				
		Si	1.803162 -0.081276 0.001093	
		Ge	-0.876329 0.004534 -0.000062	
p5	243.54, 350.07, 804.53	Н	1.692058 1.430950 -0.019500	
\mathbf{P}	822.80, 1123.54, 1277.36	Н	0.553216 -0.204561 1.052955	
	1443.87, 1634.00, 2061.60	Н	0.552989 -0.233621 -1.046781	
n 6		Н	0.624861 -0.006094 1.258019	
po	333.37, 360.96, 517.75 596.55, 794.00, 901.61 1558.18, 1897.2, 2118.90	Si	1.587996 -0.124895 -0.062314	
		Ge	-0.776519 -0.027820 -0.010669	
		Н	2.398901 1.128267 0.112673	
		Н	-0.407102 1.516600 -0.156875	
\bigcirc				

p7	276.17, 348.26, 357.83 799.33, 876.80, 900.19 2113.90, 2144.30, 2145.02	Ge Si H H H	0.004947 -0.660839 0.000000 0.004947 1.772792 0.000000 -1.490349 -1.034246 0.000000 0.631398 -1.318999 1.237402 0.631398 -1.318999 -1.237402
p8	126.52, 379.15, 526.80 715.90, 1081.98, 1234.35 1500.80, 1624.09, 1909.87	Ge Si H H H	0.773240-0.067452-0.000004-1.767610-0.020311-0.0000011.1899371.4669590.000107-0.5935430.4878401.029873-0.5935190.488016-1.029840
p9	56.81, 311.85, 374.34 394.42, 673.02, 874.99 945.84, 968.61, 1952.39 2204.11, 2215.17, 2234.16	Ge Si H H H H	-0.869630-0.049326-0.0000021.592780-0.003613-0.000004-0.8474791.5362680.0000102.0804440.721648-1.2036582.215968-1.350168-0.0001722.0802930.7212681.203945
p10	328.59, 333.56, 416.33 489.48, 513.60, 584.53 877.02, 949.56, 2169.74 2188.73, 2243.96, 2269.49	Ge Si H H H H	-0.706756-0.000006-0.0402651.506832-0.0000100.085723-1.4562281.2575920.396806-1.456550-1.2574090.3967932.2165171.221716-0.3526242.216807-1.221576-0.352597
p11	75.19, 323.44, 347.40 392.02, 704.46, 799.85 891.32, 903.79, 2065.97 2134.98, 2144.56, 2167.33	Ge Si H H H	0.698763 -0.001463 -0.000034 -1.739076 -0.108116 -0.000079 1.380949 -1.374161 -0.002540 1.196531 0.758640 1.239118 1.199088 0.764499 -1.234452 -1.789928 1.411449 0.000057
SiH	2046.06	Si H	0.0000000.0000000.1017480.0000000.000000-1.424471
GeH4	844.05, 844.40, 844.50 945.58, 945.97, 2194.31 2199.85, 2199.97, 2200.01	Ge H H H H	0.0000000.0000170.0000001.2466880.8800100.000000-1.2452910.8819870.000000-0.000699-0.8812781.245807-0.000699-0.881278-1.245807

i0 i0 i1	97.40, 151.77, 215.74 433.78, 627.01, 767.54 804.22, 883.40, 897.28 1245.82, 1613.76, 2022.48 2196.96, 2226.39, 2238.79 116.95, 356.51, 376.11 399.92, 589.30, 603.72 811.00, 901.52, 901.69 935.24, 2154.65, 2181.85 2187.21, 2215.21, 2241.67	Si - Ge H H H H H H Ge Si - H H H H	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
i2 i2 i3 i3 i3 i3	116.96, 343.90, 376.41 404.20, 572.33, 611.02 847.16, 910.80, 957.83 961.17, 2137.54, 2161.92 2227.15, 2252.19, 2260.69 82.05, 115.23, 193.09 415.83, 605.20, 847.68 883.22, 947.23, 958.73 1102.35, 1875.69, 1926.44 2266.25, 2295.02, 2314.47	H - Ge Si H H H H H Si H H H H H H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ts: i0-i1	-538.52, 167.63, 278.69 374.02, 545.58, 610.15 813.14, 872.94, 895.09 920.52, 1675.30, 2075.16 2104.12, 2184.05, 2213.30	Si H Ge H H H	-1.785107-0.120944-0.007713-2.0834761.310135-0.4064030.754624-0.001442-0.0103971.072448-0.277762-1.4906151.4302791.3054530.4049631.204648-1.1558710.876170-0.7803580.5574131.056570
ts: i0-p3	-349.58, 113.17, 159.07 256.19, 457.10, 575.54 684.76, 707.87, 816.64 905.84, 1024.09, 1423.35 1984.27, 2017.75, 3430.45	Si H Ge H H H H	2.119840-0.071382-0.0745441.8210990.5022911.310515-0.967774-0.0644570.0524300.598151-0.8031380.004271-0.4278251.845751-0.100095-0.978775-0.044006-1.5262240.2783751.561062-0.322598

ts: i1-i2	-821.18, 133.69, 301.27 387.11, 461.83, 617.38 686.32, 804.37, 819.22 945.85, 1393.24, 2072.61 2144.64, 2211.84, 2238.00 -997.06, 260.21, 272.55 322.14, 453.67, 641.94 670.20, 724.25, 900.80 921.29, 1192.35, 1510.04	Ge Si H H H H H Si H H H	0.796794 -1.615465 1.159506 1.158349 -0.566562 -2.316266 -2.315933 -0.714231 1.747195 -1.552921 -1.701947 1.678765	0.000017 0.000086 1.307645 -1.308527 -0.000324 1.209130 -1.209664 -0.038505 0.046728 1.119426 -1.047566 -1.206205	0.039083 -0.130949 -0.677116 -0.675999 1.196553 0.370252 0.368941 0.058856 0.100100 0.632492 -0.568451 -0.764608
	2035.90, 2084.08, 2139.13	H H	0.484703 0.455478	0.874883 0.837416	-1.459357 -1.124878
ts: i3-i2	-600.56, 188.17, 303.80 393.80, 602.34, 694.67 847.16, 892.59, 950.13 987.98, 1620.28, 2005.35 2186.56, 2257.02, 2284.60	Ge H Si H H H H	-0.866362 -1.355015 1.613833 2.030330 2.231304 2.046565 0.176747	-0.062645 1.312316 -0.001484 -0.818554 1.334694 -0.682413 0.879352	0.003699 -0.569146 -0.023543 -1.195977 -0.156977 1.211185 0.922154
ts: i2-p2	-1296.63, 254.62, 281.81 344.34, 408.77, 614.77 796.94, 851.03, 942.47 1009.25, 1361.40, 1716.24 1989.45, 2223.17, 2253.77	Ge Si H H H H H	0.825351 -1.645551 0.668497 0.874138 -0.330064 -2.323936 -2.262171	-0.024754 0.009801 1.280188 -0.989270 0.910850 0.775039 -1.321879	-0.089328 0.037533 0.980781 1.155663 1.003538 -1.034364 0.227428
ts: i2-p8	-683.10, 136.45, 302.08 397.96, 509.48, 587.77 729.31, 827.90, 915.23 1036.42, 1302.63, 1588.58 2052.00, 2122.62, 2307.38	Ge Si H H H H H	-0.854888 1.812496 -0.806346 0.526661 -0.958634 1.310660 1.909148	-0.003076 -0.184945 -1.362189 -0.015753 1.182457 1.423758 1.459398	-0.038187 0.048380 0.685016 -1.038151 0.942290 0.308992 -0.353484
ts: i3-p1	-1162.97, 119.49, 245.73 369.59, 560.33, 649.53 751.29, 903.16, 956.41 969.43, 1619.63, 1748.77 2234.00, 2242.00, 2249.01	Ge Si H H H H H	-0.910430 1.657575 1.853802 2.314519 2.314468 0.268058 -0.823144	-0.063819 -0.024403 -1.491442 0.532463 0.532357 1.210351 1.600104	-0.000016 0.000026 -0.000037 -1.206254 1.206382 0.000037 0.000040

ts: i3-p6	-1106.79, 260.40, 284.91 352.88, 435.81, 565.35 790.75, 817.21, 922.39 979.74, 1258.89, 1409.38 1907.76, 1994.31, 2242.65 -738.49, 290.06, 361.38 438.32, 727.50, 910.25 1966.38, 2142.28, 2161.17	Ge -0.891882 -0. H -0.573839 1.4 Si 1.526982 0.1 H 2.442810 1. H 2.366056 -1. H 2.428993 -1. H 2.428993 -1. H 0.498457 -0. Si -1.631789 -0. Ge 0.812940 0. H -2.119705 0. H 1.101296 -1. H -2.150631 0.	045809-0.0153001506430.43154007793-0.1428311020810.4623920515600.800358146645-0.2875223977481.082458121838-0.018896.0601280.0067974491371.277025485610-0.168160818102-1.061834
ts: p1-p5	-200.10, 267.83, 307.04 340.94, 417.10, 461.81 503.61, 639.64, 653.95 916.46, 974.42, 1945.29 2175.42, 2203.14, 3894.99	Ge 0.74278 - Si -1.63323 - H 1.44682 0 H 0.06201 - H -1.16695 1 H -1.41812 - H 0.79984 0	0.2490.182350.249060.083930.57998-0.952140.688751.45376.147490.687791.147491.277130.5318-1.45376
ts: p1-p9	-126.85, 52.06, 85.06 141.44, 311.67, 374.73 389.20, 664.54, 872.55 944.68, 967.69, 1884.33 2206.16, 2217.89, 2235.52	Ge -0.872560 -0. Si 1.589897 -0.0 H -0.833850 1.4 H 2.079812 0.6 H 2.199491 -1.4 H 2.079267 0.6 H 0.138648 3.2	108433-0.000005079347-0.00001582221-0.000083543611-1.20353231849-0.0006315422321.2045692444900.000055
ts: p2-p4	-504.25, 338.63, 379.67 406.84, 621.54, 806.14 1870.78, 2025.85, 2059.93	Ge -0.715919 -0. Si 1.661332 -0.0 H -1.595521 1.2 H -0.317998 -0.5 H 1.564276 1.42	039781 -0.045969 159442 -0.032179 212382 0.202764 136048 1.418361 28838 0.300374
ts: p7-p4	-1138.85, 287.76, 305.93 384.84, 706.81, 846.72 2044.59, 2060.96, 2073.74	Ge-0.727045-0.Si1.6943130.1H-1.2178280.H1.996577-1.H-1.2336870.	063226-0.0033611315180.0050427034531.256398355084-0.053284833608-1.166143

ts: p10-p9	-587.49, 276.12, 377.54 465.56, 622.37, 655.32 882.36, 1006.01, 1810.32 2001.26, 2183.22, 2223.19	Ge Si H H H H	-0.783447-0.019511-0.0487271.5148840.021352-0.018877-0.7763461.3716550.677295-0.204677-0.8965621.1734322.5503291.0962610.0274882.292617-1.245930-0.054678
ts: p11-p7	-304.33, 52.06, 96.54 301.70, 324.27, 394.33 451.35, 696.96, 797.78 890.22, 903.12, 1827.77 2132.88, 2143.83, 2165.53	Si Ge H H H H H	-1.695180-0.2958350.0000010.727292-0.0074750.000000-1.8490361.235726-0.0000041.1623390.790951-1.2377341.506406-1.3271420.0000251.1623500.7910051.237695-1.5228662.8903390.000001
ts: p11-p10	-327.34, 380.13, 382.69 476.58, 697.02, 766.91 844.13, 893.69, 1906.81 2067.23, 2164.73, 2179.34	Ge Si H H H H	-0.681057-0.000791-0.0201591.672037-0.103870-0.033121-1.536008-1.265329-0.111729-1.5434031.230618-0.301192-0.2259660.0991271.4990811.6906691.4150650.022617

Figure S1. Potential energy surface for the reaction of the silylidyne radical with germane involving atomic and molecular hydrogen loss pathways. Optimized Cartesian coordinates of the atoms and vibrational frequencies are compiled in Table S3. Germanium, silicon, and hydrogen are color coded in green, purple, and white, respectively.

Figure S2. Laboratory angular distribution and the associated time-of-flight spectra. Laboratory angular distribution at mass-to-charge ratio (m/z) of m/z = 102 recorded in the reaction of the silylidyne radical with germane (a) (28 SiH + 74 GeH₄ (red), 28 SiH + 73 GeH₄ (purple), 28 SiH + 72 GeH₄ (black) and 29 SiH + 70 GeH₄ (blue)), and the time-of-flight spectra recorded at distinct laboratory angles overlaid with the best fits (b). The solid circles with their error bars represent the normalized experimental distribution with $\pm 1\sigma$ uncertainty; the open circles indicate the experimental data points of the time-of-flight spectra. Silicon, germanium, and hydrogen are color coded in purple, green, and white, respectively.

Figure S3. Center-of-Mass (CM) distributions and the associated flux contour map. CM translational energy flux distribution (a), CM angular flux distribution (b), and the top view of their corresponding flux contour map (c) leading to the formation of H₃SiGe plus molecular hydrogen in the reaction of silylidyne with germane ($^{28}SiH + ^{74}GeH_4$ (red), $^{28}SiH + ^{73}GeH_4$ (purple), $^{28}SiH + ^{72}GeH_4$ (black) and $^{29}SiH + ^{70}GeH_4$ (blue)). Shaded areas indicate the error limits of the best fits accounting for the uncertainties of the laboratory angular distribution and TOF spectra. The flux contour map represents the flux intensity of the reactive scattering products as a function of the CM scattering angle (θ) and product velocity (u). The color bar indicates the flux gradient from high (H) intensity to low (L) intensity. Silicon, germanium, and hydrogen are color coded in purple, green, and white, respectively.