SUPPORTING INFORMATION

Investigating the Photochemical Decomposition of Solid 1,3,5-Trinitro-
1,3,5-Triazinane (RDX)

Santosh K. Singha, Vasant Vuppulurib, Steven F. Sonb, Ralf I. Kaisera*

a Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA
W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, HI 96822, USA

b Mechanical Engineering, Purdue Energetics Research Center, Purdue University, West Lafayette, IN 47907, USA

Number of Pages: 11
Title Page: S1
Table of Contents: S2
Number of Figures: 5 (S3-S7)
Number of Tables: 2 (S8-S10)

*Corresponding author. E-mail: ralfk@hawaii.edu
Table of Contents

Figures

1. Figure S1. Schematic top view of the ultra-high vacuum chamber including the radiation sources (electron source), analytical instruments (FTIR, UV-VIS, ReTOF), and cryogenic target (point of convergence of the lines).1 S3

2. Figure S2. Deconvoluted UV-Vis spectrum of RDX collected at 5K. The most intense absorption appears at around 206 nm with a shoulder at around 236 nm. The shaded regions depict the absorptions at the wavelengths employed for the decomposition of RDX. Spectrum is plotted in wavenumber to obtain the individual peak areas in cm⁻¹. S4

3. Figure S3. ¹³C NMR spectra of (a) recrystallized RDX (b) crude RDX. Peak at 63.47 ppm in the NMR spectra of crude RDX corresponds to HMX impurity which is absent is the NMR spectra measured after recrystallization of RDX. S5

4. Figure S4. Infrared spectra of (a) crystalline phase of RDX film measured by Botcher, T. R. et al. (b) amorphous phase of RDX film measured in this study. Fig (a) is adapted with permission from Botcher, T. R.; Wight, C. A. J. Phys. Chem. 1993, 97, 9149-9153. Copyright (1993) American Chemical Society. S6

5. Figure S5. PI-ReTOF mass spectrum measured as a function of temperature in a blank experiment at a photoionisation energy of 10.49 eV. S7

Tables

6. Table S1. Mass and molecular formula of the decomposition products of RDX previously reported in gas-phase and condensed-phase UV photolysis studies. S8-S9

7. Table S2. Column densities of decomposed RDX and its products calculated using their integral absorption coefficients and integrated peak area of the vibrational bands. S10
Figure S1. Schematic top view of the ultra-high vacuum chamber including the radiation sources (electron source), analytical instruments (FTIR, UV-VIS, ReTOF), and cryogenic target (point of convergence of the lines). 1
Figure S2. Deconvoluted UV-Vis spectrum of RDX collected at 5K. The most intense absorption appears at around 206 nm with a shoulder at around 236 nm. The shaded regions depict the absorptions at the wavelengths employed for the decomposition of RDX. Spectrum is plotted in wavenumber to obtain the individual peak areas in cm$^{-1}$.
Figure S3. 13C NMR spectra of (a) recrystallized RDX (b) crude RDX. Peak at 63.47 ppm in the NMR spectra of crude RDX corresponds to HMX impurity which is absent in the NMR spectra measured after recrystallization of RDX.
Figure S4. Infrared spectra of (a) crystalline phase of RDX film measured by Botcher, T. R. et al. (b) amorphous phase of RDX film measured in this study. Fig (a) is adapted with permission from Botcher, T. R.; Wight, C. A. J. Phys. Chem. 1993, 97, 9149-9153. Copyright (1993) American Chemical Society.
Figure S5. PI-ReTOF mass spectrum measured as a function of temperature in a blank experiment at a photoionisation energy of 10.49 eV.
Table S1. Mass and molecular formula of the decomposition products of RDX previously reported in gas-phase and condensed-phase UV photolysis studies.

<table>
<thead>
<tr>
<th>References</th>
<th>Photolysis Wavelength</th>
<th>Method of ionization</th>
<th>Method of detection</th>
<th>Mass (amu)</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenfield M. et al.(^2)</td>
<td>230 nm 228 nm 226 nm</td>
<td>Photoionization</td>
<td>Time of flight mass spectrometer</td>
<td>30</td>
<td>Nitrogen monoxide (NO)</td>
</tr>
<tr>
<td>Lemire G. W. et al.(^3)</td>
<td>226 nm</td>
<td>Photoionization</td>
<td>Time of flight mass spectrometer</td>
<td>30</td>
<td>Nitrogen monoxide (NO)</td>
</tr>
<tr>
<td>Wynn C. M. et al.(^4)</td>
<td>236 nm</td>
<td>-</td>
<td>Laser induced fluorescence</td>
<td>30</td>
<td>Nitrogen monoxide (NO)</td>
</tr>
<tr>
<td>Tang T. B. et al.(^5)</td>
<td>266 nm</td>
<td>Photoionization</td>
<td>Time of flight mass spectrometer</td>
<td>16</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>Hydroxy (OH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>Water (H(_2)O)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>Cyanide (CN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>Carbon monoxide (CO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>Nitrogen monoxide (NO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>Carbon nitrides (NCN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>HCN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>Diazomethane (H(_2)CNN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td>Nitrogen dioxide (NO(_2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>(C(_3)N(_3)H(_4))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td>(C(_3)N(_3)H(_3))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td>C(_2)N(_2)O(_2)H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td>C(_2)N(_2)O(_3)H(_2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>(C(_3)N(_3)H)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
<td>(C(_3)N(_3)H(_2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td>(C(_3)N(_4)H(_6))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>134</td>
<td>(H(_2)CN(_4)O(_4))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>176</td>
<td>(H(_6)C(_3)N(_5)O(_4))</td>
</tr>
<tr>
<td>Source</td>
<td>Wavelength</td>
<td>Technique</td>
<td>Analytes</td>
<td>Peaks</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Alix J. et al.</td>
<td>UV Broadband</td>
<td>FTIR spectrometer</td>
<td>Nitrogen monoxide (NO)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dinitrogen monoxide (N$_2$O)</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon monoxide (CO)</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Formaldehyde (H$_2$CO)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen monoxide dimer (NO)$_2$</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dinitrogen trioxide (N$_2$O$_3$)</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Methane (CH$_4$)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ozone (O$_3$)</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acetylene (C$_2$H$_2$)</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Gares K. L. et al.</td>
<td>229 nm</td>
<td>Diffuse UV resonance Raman spectrometer</td>
<td>Nitrate ions (NO$_3^-$)</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Triazine (C$_3$N$_3$H$_3$)</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon nitrides (C≡N)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dickinson, J. T. et al.</td>
<td>248 nm</td>
<td>Electron impact ionization Time of flight mass spectrometer</td>
<td>Hydrogen (H$_2$)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydroxyl radical (OH)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Water (H$_2$O)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydrogen cyanide (HCN)</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Formaldehyde (H$_2$CO)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen monoxide (NO)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diazomethane (H$_2$CNN)</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ethanenitrilium (C$_2$H$_4$N)</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrous oxide (N$_2$O)</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen dioxide (NO$_2$)</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diazaoethane (CH$_3$CH$_2$N$_2$)</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Methylene nitramine (H$_2$CNNO$_2$)</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>s-triazene (C$_3$N$_3$H$_3$)</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>
Table S2. Column densities of decomposed RDX and its products calculated using their integral absorption coefficients and integrated peak area of the vibrational bands.

<table>
<thead>
<tr>
<th>Wavenumber Observed (cm(^{-1}))</th>
<th>Assignment</th>
<th>Integrated Absorption Coefficient (A(\cdot) cm molecule(^{-1}))</th>
<th>Column Density (molecule cm(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>254 nm (dose: 10.7 ± 1.0 eV molecule(^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1581</td>
<td>(v^\text{as}(\text{NO}_2)) RDX</td>
<td>(5.1 \times 10^{17})</td>
<td>(5.6 \pm 0.6 \times 10^{15})</td>
</tr>
<tr>
<td>3500-3100</td>
<td>(v_\text{OH}(\text{H}_2\text{O}))</td>
<td>(2.0 \times 10^{16})</td>
<td>(5.8 \pm 0.6 \times 10^{14})</td>
</tr>
<tr>
<td>2340</td>
<td>(v_3(\text{CO}_2))</td>
<td>(7.6 \times 10^{17})</td>
<td>(3.9 \pm 0.4 \times 10^{14})</td>
</tr>
<tr>
<td>2231</td>
<td>(v_1(\text{N}_2\text{O}))</td>
<td>(5.2 \times 10^{17})</td>
<td>(7.9 \pm 0.8 \times 10^{14})</td>
</tr>
<tr>
<td>2138</td>
<td>(v_1(\text{CO}))</td>
<td>(1.1 \times 10^{17})</td>
<td>(5.3 \pm 0.5 \times 10^{14})</td>
</tr>
<tr>
<td>1861</td>
<td>(v_1(\text{NO}))</td>
<td>(5.2 \times 10^{17})</td>
<td>(1.0 \pm 0.1 \times 10^{15})</td>
</tr>
<tr>
<td>1756</td>
<td>(v_5([\text{NO}]_2))</td>
<td>(9.3 \times 10^{17})</td>
<td>(3.1 \pm 0.4 \times 10^{14})</td>
</tr>
<tr>
<td>1300</td>
<td>(v_3(\text{N}_2\text{O}_3))</td>
<td>(4.6 \times 10^{17})</td>
<td>(3.0 \pm 0.3 \times 10^{14})</td>
</tr>
<tr>
<td>254 nm (dose: 0.5 ± 0.1 eV molecule(^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1581</td>
<td>(v^\text{as}(\text{NO}_2)) RDX</td>
<td>(5.1 \times 10^{17})</td>
<td>(1.2 \pm 0.2 \times 10^{15})</td>
</tr>
<tr>
<td>1861</td>
<td>(v_1(\text{NO}))</td>
<td>(5.2 \times 10^{17})</td>
<td>(2.1 \pm 0.3 \times 10^{14})</td>
</tr>
<tr>
<td>1756</td>
<td>(v_5([\text{NO}]_2))</td>
<td>(9.3 \times 10^{17})</td>
<td>(2.4 \pm 0.3 \times 10^{13})</td>
</tr>
<tr>
<td>1300</td>
<td>(v_3(\text{N}_2\text{O}_3))</td>
<td>(4.6 \times 10^{17})</td>
<td>(2.2 \pm 0.2 \times 10^{14})</td>
</tr>
<tr>
<td>206 nm (dose: 22.3 ± 2.0 eV molecule(^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1581</td>
<td>(v^\text{as}(\text{NO}_2)) RDX</td>
<td>(5.1 \times 10^{17})</td>
<td>(4.5 \pm 0.5 \times 10^{15})</td>
</tr>
<tr>
<td>3500-3100</td>
<td>(v_\text{OH}(\text{H}_2\text{O}))</td>
<td>(2.0 \times 10^{16})</td>
<td>(4.3 \pm 0.4 \times 10^{14})</td>
</tr>
<tr>
<td>2340</td>
<td>(v_3(\text{CO}_2))</td>
<td>(7.6 \times 10^{17})</td>
<td>(6.9 \pm 0.7 \times 10^{14})</td>
</tr>
<tr>
<td>2231</td>
<td>(v_1(\text{N}_2\text{O}))</td>
<td>(5.2 \times 10^{17})</td>
<td>(1.0 \pm 0.1 \times 10^{15})</td>
</tr>
<tr>
<td>2138</td>
<td>(v_1(\text{CO}))</td>
<td>(1.1 \times 10^{17})</td>
<td>(5.6 \pm 0.6 \times 10^{14})</td>
</tr>
<tr>
<td>1861</td>
<td>(v_1(\text{NO}))</td>
<td>(5.2 \times 10^{17})</td>
<td>(5.2 \pm 0.7 \times 10^{14})</td>
</tr>
<tr>
<td>1756</td>
<td>(v_5([\text{NO}]_2))</td>
<td>(9.3 \times 10^{17})</td>
<td>(2.2 \pm 0.2 \times 10^{14})</td>
</tr>
<tr>
<td>1300</td>
<td>(v_3(\text{N}_2\text{O}_3))</td>
<td>(4.6 \times 10^{17})</td>
<td>(5.5 \pm 0.6 \times 10^{14})</td>
</tr>
<tr>
<td>206 nm (dose: 0.9 ± 0.1 eV molecule(^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1581</td>
<td>(v^\text{as}(\text{NO}_2)) RDX</td>
<td>(5.1 \times 10^{17})</td>
<td>(1.5 \pm 0.2 \times 10^{15})</td>
</tr>
<tr>
<td>3500-3100</td>
<td>(v_\text{OH}(\text{H}_2\text{O}))</td>
<td>(2.0 \times 10^{16})</td>
<td>(1.2 \pm 0.2 \times 10^{14})</td>
</tr>
<tr>
<td>2231</td>
<td>(v_1(\text{N}_2\text{O}))</td>
<td>(5.2 \times 10^{17})</td>
<td>(7.7 \pm 0.8 \times 10^{13})</td>
</tr>
<tr>
<td>1861</td>
<td>(v_1(\text{NO}))</td>
<td>(5.2 \times 10^{17})</td>
<td>(3.2 \pm 0.3 \times 10^{14})</td>
</tr>
<tr>
<td>1756</td>
<td>(v_5([\text{NO}]_2))</td>
<td>(9.3 \times 10^{17})</td>
<td>(7.8 \pm 0.8 \times 10^{13})</td>
</tr>
<tr>
<td>1300</td>
<td>(v_3(\text{N}_2\text{O}_3))</td>
<td>(4.6 \times 10^{17})</td>
<td>(2.6 \pm 0.2 \times 10^{14})</td>
</tr>
</tbody>
</table>
References.