Supporting Information

Gas Phase Identification of the Elusive N-Hydroxyoxaziridine (c-H₂CON(OH)) – A Chiral Molecule

Santosh K. Singh^a, Tang-Yu Tsai^b, Bing-Jian Sun^b, Agnes H.H. Chang^{*b}, Alexander M. Mebel^c Ralf I. Kaiser^{*a}

^aDepartment of Chemistry, University of Hawaii, 2545 McCarthy Mall, 96822 HI, USA W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, 96822 HI, USA

^bDepartment of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan

^cDepartment of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA

*Corresponding authors. E-mail: ralfk@hawaii.edu, hhchang@gms.ndhu.edu.tw

METHODS

Experimental

Experiments were conducted in an ultrahigh vacuum chamber evacuated to a base pressure of a few 10⁻¹¹ torr using turbo molecular pumps backed by dry scroll pumps.¹⁻² To prepare each ice mixture, gases of methane (CH₄; 99.95% Sigma Aldrich) and nitrogen dioxide (NO₂; 99.95% Sigma Aldrich) were premixed and deposited at 5×10^{-8} torr via glass capillary onto a silver substrate which is mounted on a cold finger made from oxygen free high conductivity copper. The temperature of the cold finger was maintained at 4.9 ± 0.2 K using closed cycle helium refrigerator (Sumitomo Heavy Industries, RDK-415E) during deposition of the gases. The ice mixtures of ${}^{13}C$ -methane (${}^{13}CH_4$) and nitrogen dioxide (NO₂) as well as deuterated-methane (CD₄) and NO₂ were prepared in the similar way. The thickness of each ice of 550±50 nm was determined in situ via laser interferometry (SI). The ratio of methane to nitrogen dioxide in the ice mixture was found to be 1.2 ± 0.4 :1 by using the integrated infrared absorption coefficients of 9.71×10^{-18} (1297 cm⁻¹) and 6.24×10^{-18} cm molecule⁻¹ (1613 cm⁻¹), respectively.³⁻⁴ The infrared spectra of the ice mixtures were collected in the 6000-600 cm⁻¹ region using a Fourier Transform Infrared Spectrometer (Nicolet 6700) operated at a resolution of 4 cm⁻¹. Then, each ice mixture was exposed to 5 keV energetic electrons at an angle of 70° to the normal of the substrate at an electron current of 20 ± 2 nA for 15 min. IR spectra of the ices were measured in situ during irradiation to monitor the changes induced by ionizing radiation. Using Monte Carlo simulations via CASINO 2.42 software,⁵ the average penetration depth of the electrons in the ice mixture was found to be 289±30 nm and the average energy deposited was calculated to be 1.2±0.2 eV per molecule. Hereafter, ices were annealed at a rate of 1 K min⁻¹, and molecules subliming from the substrate were ionized and detected using photoionization along with reflectron time-of-flight mass spectrometry (PI-ReTOF-MS). Pulsed VUV light is utilized for the photoionization of the molecules. Three VUV energies at 10.49 eV, 10.20 eV, 9.80 eV, and 9.70 eV were used to differentiate between isomers of oxaziridine. The ions formed are extracted and eventually separated based on their mass-to-charge (m/z) ratio before reaching to microchannel plate (MCP) detector. The MCP detector generates a signal when ions reach to the detector. This signal is amplified using a preamplifier (Ortec 9305) and shaped with a 100 MHz discriminator. The discriminator sends the signal to a computer based multichannel scaler, which records the signal

in 4 ns bins triggered at 30 Hz by a pulse delay generator. 3600 sweeps were collected for each mass spectrum per 1 K increase in the temperature during the TPD phase.

Computational

The reactions between carbene (CH_2) and nitrous acid (HONO) proceeding on the triplet and singlet potential energy surfaces (PESs) are investigated. Collision complexes were identified, their mutual conversion and subsequent isomerization of c-H₂CON(OH) (1) were characterized. The geometries of these species and transition states were optimized along with the harmonic frequencies by utilizing coupled cluster CCSD/cc-pVTZ calculations.⁶⁻⁷ This theoretical method could provide accuracy of 1-2 pm for bond lengths and 1-2° for bond angles. In addition, the anharmonic frequencies and the IR spectrum of molecule 1 are predicted. Their CCSD(T)/ccpVDZ, CCSD(T)/cc-pVTZ, and CCSD(T)/cc-pVQZ energies were computed and extrapolated to complete basis set limits,⁸ CCSD(T)/CBS, with CCSD/cc-pVTZ zero-point energy corrections. These energies are expected to be accurate within 4 kJ mol^{-1,9} The triplet - singlet minimum energy crossing points (MSX) were located with CPMCSCF¹⁰/TZVPP method with energy refined via CCSD(T)/CBS. The intrinsic reaction coordinate (IRC) calculations at CCSD/ccpVTZ//CCSD(T)/CBS level were carried out to probe the entrance of singlet CH₂ + HONO \rightarrow 1, 4, 6 channels. Multi-reference CI (MRCI) calculations are also performed on CCSD/cc-pVTZ optimized geometries to assess the multi-reference effects, in which the reference space and molecular orbitals were provided by MCSCF(8,8), 8 active electrons in 8 orbitals. Likewise, MRCI/cc-pVDZ, MRCI/cc-pVTZ, and MRCI/cc-pVQZ results with Davidson corrections were extrapolated to obtain the MRCI/CBS energies with CCSD/cc-pVTZ zero-point energy corrections. MCSCF(8,8) generates reference space of 1764 and 2352 CSFs (configuration state functions), for singlet and triplet surfaces, respectively. As a result, the MRCI/cc-pVQZ correspondingly consists of 75669972, and 129051696 CSFs. The MRCI/CBS and CCSD(T)/CBS energies are expected to be accurate within 4 and 8 kJ mol⁻¹, respectively.^[6] The GAUSSIAN 16 program¹¹ was employed in coupled cluster calculations, and MOLPRO¹⁰ was used for the surface-crossing, MCSCF, and MRCI computations.

Figure S1. Schematic top view of the ultra-high vacuum chamber including the electron source, analytical instruments (FTIR, UV-VIS, ReTOF), and cryogenic target (point of convergence lines)^{1, 12}.

Figure S2. Infrared (IR) spectra of (a) $CH_4 + NO_2$, (b) ${}^{13}CH_4 + NO_2$, ice mixtures before and after the irradiation. Detailed assignments of the bands are provided in Table S1 and S2. New bands observed after irradiation are indicated in red color.

Figure S3. Infrared (IR) spectra of $CD_4 + NO_2$ ice mixture before and after the irradiation. Detailed assignments of the bands are provided in Table S3. New bands observed after irradiation are indicated in red color.

The FTIR spectrum measured after the irradiation revealed new bands at 2136, 1694, and 1440 cm-1 (Supplementary Fig. S2a, Table S1). Absorptions at 2136, 1694, and 1440 cm-1 can be associated with vibrations of carbon monoxide (CO), nitrous acid (HONO) and methyl group (- CH3) respectively.¹³⁻¹⁴ The peaks corresponding to N-hydroxyoxaziridine (c-H2CON(OH); 1; Supplementary Table S5) are not distinguishable in the spectrum since the fundamentals of N-hydroxyoxaziridine (c-H2CON(OH); 1) either overlay with infrared absorptions of the reactants or are too weak to be observed.

Figure S4. Interference pattern measured during the deposition of a $CH_4 + NO_2$ gas mixture for a 632.8 nm laser at an angle of incidence of 4°. Number of fringes are labelled below the signal minima.

The thickness of the ice (d) was determined using laser interferometry. A He-Ne laser of 632.8 nm has been used at an angle of incidence (θ) equal to 4° to measure the interference. The interference pattern observed during deposition of ice mixture is shown in Figure S3.

The refractive indices $(n = 1.32)^4$ of nitrogen dioxide and methane ice (n = 1.33) are very similar; therefore a refractive index value of n = 1.32 was considered in equation (1) to determine the thickness of the ice. The number of fringes (m) observed during the deposition of ice is equal to 3.

$$d = \frac{m\lambda}{2\sqrt{n^2 - \sin^2\theta}} \qquad (1)$$

where $\lambda = 632.8$ nm and $\theta = 4^{\circ}$.

The ice composition was determined based on the column density of NO₂ and CH₄ measured via FTIR bands. The column density of NO₂, measured at the 1613 cm⁻¹ band, $2.35 \pm 0.3 \times 10^{17}$ molecules cm⁻², and that of CH₄, determined at the 1297 cm⁻¹ band, $2.83 \pm 0.2 \times 10^{17}$, molecules cm⁻² indicate that the deposited ice mixture had a 1.2 ± 0.1 :1.0 CH₄ to NO₂ ratio.

Figure S5. PI-ReTOF-MS data of the molecules subliming from a non-irradiated CH_4 -NO₂ ice mixture as a function of temperature at a photon energy of 10.49 eV.

Figure S6. Temperature program desorption (TPD) profiles of molecules subliming from the irradiated and non-irradiated ice mixture. Parent molecule (nitrogen dioxide; NO₂) is measured at m/z = 46. All the product masses, measured at m/z = 59 (C₂H₅NO), 61 (CH₃NO₂), 89 (C₃H₇NO₂) and 90 (C₂H₆N₂O₂), are observed only in the case of irradiated ice mixture except m/z = 30 (nitrogen monoxide, NO). Nitrogen monoxide (m/z = 30; NO) is observed even in non-irradiated ice mixture due to photo-fragmentation of subliming NO₂ (nitrogen dioxide) molecules.

Figure S7. Temperature program desorption (TPD) profiles measured at (a) m/z = 64 in $CD_4 + NO_2$ system and (b) m/z = 62 in ${}^{13}CH_4 + NO_2$ system. (c) TPD profile measured at m/z = 62 in non-isotopic labeled $CH_4 + NO_2$ experiment; this ion signal corresponds to species of a molecular formula $N_2H_2O_2$ and contribute to ion counts at m/z = 64 and 62 in D4-methane and ${}^{13}C$ -labeled isotopic experiments in the temperature range 150-160 K (denoted by shaded orange bar). The peak corresponding to CH_3NO_2 molecular formula (plus isotopically labelled species) are denoted by shaded blue color bar.

Figure S8. Intrinsic reaction coordinate (IRC) calculations at the CCSD/cc-pVTZ//CCSD (T)/CBS level of theory, for the formation of isomers (a) **4**, (b) **6**, and (c) **1** via addition of singlet carbene (CH₂) to nitrous acid (HONO). Barrier-less addition of carbene to the central nitrogen atom and to the terminal oxygen atom of HONO leads to isomers **4** and **6**, respectively. Isomer **1** can be formed via addition of singlet carbene to the N=O bond of nitrous acid, which has a small barrier of about 7 kJ mol⁻¹.

Figure S9. Formation pathway of triplet N-hydroxyoxaziridine (c- $H_2CON(OH)$; 1) from triplet aci-nitromethane ($H_2CN(OH)O$; 4), calculated at the CCSD(T)/CBS level of theory. Relative energies in parentheses are calculated at the CCSD/cc-pVTZ//MRCI/CBS level. Cartesian coordinates of the structures are provided in Table S10. Bond lengths and bond angles are given in picometers and degrees respectively.

Figure S10. Unimolecular decomposition pathways of singlet N-hydroxyoxaziridine (c- $H_2CON(OH)$; 1), calculated at the CCSD/cc-pVTZ//CCSD(T)/CBS level. Energies computed at the CCSD/cc-pVTZ//MRCI/CBS level are provided in parentheses. Cartesian coordinates of the structures are provided in Tables S9-S10. Note for those paths in dotted lines, the attempts are not made or not successful in locating the transition states.

Figure S11. Structures including geometrical parameters of singlet and triplet carbene (CH₂) along with singlet nitrous acid (HONO). Bond lengths are in pm and bond angles are in degrees.

Figure S12. Structures along with geometrical parameters of 1a, 1b, 4, and 6a. Bond lengths are in pm and bond angles are in degrees.

Figure S13. Structures and geometrical parameters of transition states corresponding to Fig. 4. Bond lengths are in pm and bond angles are in degrees.

Figure S14. Computed (CCSD/cc-pVTZ//CCSD(T)/CBS level) isomerization processes of trans (1a/1a') and cis (1b/1b') conformers of N-hydroxyoxaziridine (c-H₂CON(OH); 1) along with ring inversion barriers. Relative energies in parentheses are calculated at the CCSD/cc-pVTZ//MRCI/CBS level. Bond lengths are in pm and bond angles are in degrees. Cartesian coordinates of the structures are provided in Tables S9- S10.

(a) Before Irradiation	1		
Wavenumber Observed (cm ⁻¹)	Wavenumber Literature (cm ⁻¹) ^{4,} ^{13,7}	Vibrational Assignments	Vibrational Modes
4530	4534	$v_2 + v_3$	CH ₄ combination
4300	4303	$v_3 + v_4$	CH ₄ combination
4204	4203	$\nu_1 + \nu_4$	CH ₄ combination
3010	3012	v ₃	CH ₄ antisymmetric stretch
2904	2906	ν_1	CH ₄ symmetric stretch
2815	2821	$v_2 + v_4$	CH ₄ combination
2040	-	$v_9 + v_{12}$	N_2O_4 combination
1951	-	$v_1 + v_4$	NO ₂ combination
1860	1860	$v_4 + v_5$	N_2O_4 combination
1737	1736	ν_9	N ₂ O ₄ stretch
1608	1613	v ₃	NO ₂ stretch
1297	1297	v_4	CH ₄ deformation
1257	1262	ν_{11}	N ₂ O ₄ deformation
752	751	v_{12}	N_2O_4 deformation
(b) After Irradiation			
2136	2137	ν_1	CO stretch
1694	1699	v_2	HONO
1440	1430		CH ₃ Deformation

Table S1. (a) Infrared absorption features of CH_4 and NO_2 ice mixture before irradiation and (b) new absorption bands observed in the infrared spectrum after irradiation. All measurements have been performed at 5K.

(a) Before Irradiatio	(a) Before Irradiation								
Wavenumber Observed (cm ⁻¹)	Wavenumber Literature (cm ⁻¹) ^{4, 15}	Vibrational Assignments	Vibrational Modes						
4520	4534	v ₂ +v ₃	¹³ CH ₄ combination						
4283	4301	$v_3 + v_4$	¹³ CH ₄ combination						
4192	4213	$v_1 + v_4$	¹³ CH ₄ combination						
2998	3009	ν_3	¹³ CH ₄ antisymmetric stretch						
2902	-	ν_1	¹³ CH ₄ symmetric stretch						
2807	2822	$v_2 + v_4$	¹³ CH ₄ combination						
2040	-	$v_9 + v_{12}$	N ₂ O ₄ combination						
1951	-	$v_1 + v_4$	NO ₂ combination						
1862	1860	$v_4 + v_5$	N ₂ O ₄ combination						
1737	1736	V 9	N ₂ O ₄ stretch						
1608	1613	ν_3	NO ₂ stretch						
1291	-	ν_4	¹³ CH ₄ deformation						
1257	1262	ν_{11}	N ₂ O ₄ deformation						
752	751	v_{12}	N_2O_4 bend						
(b) After Irradiation									
2111	2100	ν_1	¹³ CO stretch						
1690	1699	v_2	HONO						
1436	1430		¹³ CH ₃ Deformation						

Table S2. (a) Infrared absorption features of ${}^{13}CH_4$ and NO₂ ice mixture before irradiation and (b) new absorption bands observed in the infrared spectrum after irradiation. All measurements have been performed at 5K.

(a) Before Irradiation	1		
Wavenumber Observed (cm ⁻¹)	Wavenumber Literature $(cm^{-1})^{4}$, 16	Vibrational Assignments	Vibrational Modes
4474	4478	2v ₃	CD ₄ Overtone
3237	3237	$v_3 + v_4$	CD ₄ combination
3089	3090	$v_1 + v_4$	CD ₄ combination
2970	-	$v_9 + v_{11}$	N ₂ O ₄ combination
2250	2252	ν ₃	CD ₄ antisymmetric stretch
2200	-	ν_1	N ₂ O stretch
2080	2073	$v_1 / v_9 + v_{12}$	CD_4 symmetric stretch or /and NO ₂ combination
1970	1975	$2v_4/v_1+v_4$	CD_4 overtone or/and NO_2
1868	1860	$v_4 + v_5$	N_2O_4 combination
1762	1763	ν_8	N ₂ O ₄ stretch
1738	1736	V 9	N ₂ O ₄ stretch
1608	1613	V ₃	NO ₂ stretch
1436	-		N ₂ O ₄ deformation
1304	1304	ν_{l}	NO ₂ stretch
1259	1262	v_{11}	N ₂ O ₄ deformation
989	990	v_4	CD ₄ bend
752	751	v_{12}	N_2O_4 bend
(b) After Irradiation			
2167	2137	ν_1	CO stretch
1683	-	V ₂	DONO

Table S3. (a) Infrared absorption features of CD_4 and NO_2 ice mixture before irradiation and (b) new absorption bands observed in the infrared spectrum after irradiation. All measurements have been performed at 5K.

Initial Kinetic energy of the electrons	5 keV
Irradiation current (I)	$20 \pm 2 \text{ nA}$
Irradiation time (t)	900 s
Average penetration depth, l	289±30 nm
Average kinetic energy of backscattered electrons, $E_{\text{bs}}{}^{a}$	$3.8 \pm 0.3 \text{ keV}$
Fraction of backscattered electrons, $f_{bs}{}^{a}$	0.37 ± 0.03
Average kinetic energy of transmitted electrons, E_{trans}^{a} ,	0.0 keV
Fraction of transmitted electrons, f _{trans} ^a	0
Density of the ice, p	1.17 g cm ⁻³
Irradiated area, A	$1.0 \pm 0.2 \text{ cm}^2$
total number of molecules processed	(3.3±0.3)×10 ¹⁷
dose per molecule, D	$1.2 \pm 0.2 \text{ eV}$
Total number of electrons	(1.1±0.1)×10 ¹⁴

Table S4. Data applied to calculate the average dose per molecule.

^a Values from CASINO simulations.

	Calculated		Assignments
Normal	Anharmonic frequencies	Intensity	
modes	(cm ⁻¹)	(km mol ⁻	
		1)	
ν1	353	111	
ν2	455	26	
v3	490	1	
ν4	627	92	Ring vibration
v5	813	19	Ring vibration
v6	939	38	Ring asymm. stretch
ν7	1067	8	CH ₂ deformation
ν8	1136	4	
v9	1182	3	
v10	1236	50	CH ₂ wagging
v11	1386	37	N-O-H bending
v12	1485	3	C-H bending
v13	2900	19	Symm. C-H stretch
v14	3016	20	Asymm. C-H stretch
v15	3600	61	O-H stretch

Table S5. The calculated anharmonic frequencies of the N-hydroxyoxaziridine (c-H₂CON(OH); **1**).

	Isomers	Ionization energies (IE, eV)		
		Calculated	Experimental	
1a	trans-N-hydroxyoxaziridine	9.99	-	
1b	cis-N-hydroxyoxaziridine	9.79	-	
2	Nitromethane	11.10	11.0813	
3a	cis-methylnitrite	10.50	-	
3b	trans-methylnitrite	10.31	10.3814	
4a	trans-aci-nitromethane	9.57	-	
4b	cis-aci-nitromethane	9.56	-	
5a	trans-nitrosomethanol	8.77	-	
5b	cis-nitrosomethanol	8.90	-	
6a	cis-hydroxy(methyleneoxonio)amide	8.18	-	
6b	trans-hydroxy(methyleneoxonio)amide	7.79	-	
7a	cis-formohydroxamic acid	9.50	-	
7b	trans-formohydroxamic acid	9.65	-	
8a	cis-N-hydroxyformimidic acid	9.66	-	
8b	trans-N-hydroxyformimidic acid	9.42	-	
9a	trans-N-oxido-N-hydroformimidic acid	8.38	-	
9b	cis-N-oxido-N-hydroformimidic acid	8.47	-	
10a	trans-carbamic acid	10.58	-	
10b	<i>cis</i> -carbamic acid	10.74	-	
11	Carbonimidic acid	9.94	-	
12	1,2,3-dioxazetidine	9.20	-	
13	1,3,2-dioxazetidine	9.04	-	
14a	trans-(aminooxy)formaldehyde	9.48	-	
14b	cis-(aminooxy)formaldehyde	9.39	-	
15	3-methyl-1,2,3-dioxaziridine	10.71	-	

Table S6. Calculated (B3LYP//CCSD(T)/CBS level) and experimental ionization energies (IE) of the CH₃NO₂ isomers.

Name	Structure	Ionization ene		
		B3LYP//CCSD	Exp.	Error
		(T)/CBS		
Nitrosomethane ¹	R-0-0	9.25	9.3ª	+0.05
Trans- Formaldehyde oxime ¹		10.03	10.11 ^a	+0.08
Nitromethane		11.10	11.08 ^b	-0.02
Trans-methyl nitrite ¹		10.31	10.38 °	+0.07
Trans- nitrosomethane dimer ¹		8.38	8.3 ^a	-0.08
N-methyl formamide ²		9.80	9.83 ^d	-0.03
Acetamide ²		9.74	9.69 ^d	-0.05
Metanimine ³	6. 	9.94	9.88 °	-0.06
1,1- Dimethylhydrazin e ³		7.24	7.29 f	-0.05
Formamide ⁴		10.24	10.16 ^d	-0.08

Table S7. Experimental and calculated ionization energies of various molecules.

^aFrost, D.C.; Lau, W.M.; McDowell, C.A.; Westwood, N.P.C. A Study by He I Photoelectron Spectroscopy of Monomeric Nitrosomethane, the Cis and Trans Dimers, and Formaldoxime. J. Phys. Chem. 1982, 86, 3577. bLifshitz, C.; Rejwan, M.; Levin, I.; Peres, T., Unimolecular Fragmentations of the Nitromethane Cation. Int. J. Mass Spectrom. Ion Processes 1988, 84, 271. Gilman, J.P.; Hsieh, T.; Meisels, G.G. Competition Between Isomerization and Fragmentation of Gaseous Ions. II. Nitromethane and methylnitrite ions. J. Chem. Phys. 1983, 78, 1174. dNational Institute of Standards and technology (NIST) U.S. Department of Commerce. "Tarasenko, N.A.; Tishenkov, A.A.; Zaikin, V.G.; Volkova, V.V.; Gusel'nikov, L.E. Adiabatic Ionization Energy of Methylenimine. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1986, 10, 2196. ^fMautner, M.; Nelsen, S.F.; Willi, M.R.; Frigo, T.B. Special Effects of an Unusually Large Neutral to Radical Cation Geometry Change. Adiabatic Ionization Energies and Proton Affinities of Alkylhydrazines. J. Am. Chem. Soc. 1984, 106, 7384. ¹Calculated ionization energy values taken from reference Maksyutenko, P.; Förstel, M.; Crandall, P.; Sun, B.-J.; Wu, M.-H.; Chang, A. H. H.; Kaiser, R. I. An Isomer-Specific Study of Solid Nitromethane Decomposition Pathways - Detection of Aci-nitromethane (H₂CNO(OH)) and Nitrosomethanol (HOCH₂NO) Intermediates. Chem. Phys. Lett. 2016, 658, 20-29.²Calculated values reproduced from reference Frigge, R.; Zhu, C.; Turner, A. M.; Abplanalp, M. J.; Bergantini, A.; Sun, B.-J.; Chen, Y.-L.; Chang, A. H. H.; Kaiser, R. I. A Vacuum Ultraviolet Photoionization Study on the Formation of N-methyl Formamide (HCONHCH₃) in Deep Space: A Potential Interstellar Molecule with a Peptide Bond. ApJ. 2018, 862, 84.3 Calculaed values reproduced from reference Zhu, C.; Frigge, R.; Turner, A. M.; Abplanalp, M. J.; Sun, B.-J.; Chen, Y.-L.; Chang, A. H. H.; Kaiser, R. I., A Vacuum Ultraviolet Photoionization Study on the Formation of Methanimine (CH₂NH) and Ethylenediamine (NH₂CH₂CH₂NH₂) in Low Temperature Interstellar Model Ices Exposed to Ionizing Radiation. Phys. Chem. Chem. Phys. 2019, 21, 1952-1962.4 Calculaed values reproduced from reference Förstel, M.; Maksyutenko, P.; Jones, B. M.; Sun, B. J.; Lee, H. C.; Chang, A. H. H.; Kaiser, R. I., On the Formation of Amide Polymers via Carbonyl-Amino Group Linkages in Energetically Processed Ices of Astrophysical Relevance. ApJ. 2016, 820, 117.

The ionization energies derived from CCSD(T)/CBS with B3LYP/cc-pVTZ zero point correction

method have overall error range of ± 0.08 eV with respect to the experimental ionization energies.

Generation of VUV light

1. 10.49 eV –The third harmonics (355 nm) of a pulsed ND:YAG laser (Spectra Physics, PRO-250-30; 30 Hz) is exploited for generating 10.49 eV VUV light. The 355 nm light is focused on pulsed jet of Xenon (80 μ s, 30 Hz) which results in generation of 118 nm light (10.49 eV) via non-linear mixing. The 10.49 eV light is separated from 355 nm light by a LiF biconvex lens (ISP Optics) and directed 2 mm above the sample to ionize the subliming molecules.

2. 10.20 eV – The second harmonics (532 nm) of a pulsed ND:YAG laser (Spectra Physics, PRO-250-30; 30 Hz, 10 ns) is used to pump a dye laser (Sirah Cobra Stretch) having Rhodamine 610/640 dye mixture. The fundamental output of the dye laser (607 nm) undergoes frequency tripling to generate 202 nm (ω 1). Two photons of ω 1 is required to accesses the resonant transition of Krypton. The 532 nm light from a second ND:YAG laser (Spectra Physics, PRO-250-30; 30 Hz, 10 ns) is used to pump another dye laser (Sirah Cobra Stretch) containing Rhodamine 610/640 dye mixture to generate 606 nm (ω 2) light. The 202 nm and 606 nm lights are spatially and temporally overlapped on pulsed jet of Krypton (80 µs, 30 Hz) which act as a non-linear medium. Difference frequency mixing of two photons of ω 1 and one photon of ω 2 in Krypton (2 ω 1- ω 2) results in the generation of 121.5 nm (ω_{VUV} ; 10.20 eV) light. A LiF biconvex lens is used to separate the 121.5 nm light from residual 202 and 606 nm lights.

3. 9.80 eV – The 126.51 nm (9.80 eV) light is generated via difference frequency mixing of two photons of 202 nm (ω 1) and one photon of 504.7 nm (ω 2) in krypton. The process of producing 202 nm has been discussed in the generation of 10.20 eV light. To generate 504.7 nm light, a dye laser containing Coumarin 503 dye is being pumped by the third harmonics (355 nm) of a ND:YAG laser. The 202 nm (ω 1) and 504.7 nm (ω 2) lights are spatially and temporally overlapped on pulsed jet of Krypton for difference frequency generation of 9.80 eV light, which is eventually separated from the residual ω 1 and ω 2 through a LiF biconvex lens. The generated 9.80 eV light is directed at about 2 mm above the sample to ionize the subliming molecules.

4. 9.70 eV – Difference frequency mixing of two photons of 202 nm (ω 1) and one photon of 485 nm (ω 2) in Krypton results in generation of 127.8 nm (9.70 eV) light. The process of producing 202 nm is identical to that of described in the generation of 10.20 eV light. To generate 485 nm light, a dye laser containing Coumarin 480 dye is being pumped by the third harmonics (355 nm) of a ND:YAG laser. Both ω 1 and ω 2 are spatially and temporally overlapped on pulsed jet of

Krypton for difference frequency generation of 127.8 nm light. The 127.8 nm light generated is eventually separated from the residual 202 nm and 485 nm lights by the help of LiF biconvex lens and directed at about 2 mm above the sample to ionize the subliming molecules.

		ω1			ω2				
VUV	Noble	YAG 1	Dye	Dye laser	Wavelength	YAG 2	Dye	Dye laser	Photons/pulse*
Energy	gas	$(\lambda; nm)$		(λ; nm)	after tripling	(λ; nm)		(λ; nm)	
					(nm)				
10.49 eV	Xe	355	-	-	-	-	-	-	10 ¹⁴
10.20 eV	Kr	532	Rhodamine	606.94	202.31	532 nm	Rhodamine	606	1014
			610/640				610/640		
9.80 eV	Kr	532	Rhodamine	606.94	202.31	355 nm	Coumarin	504.7	10 ¹⁴
			610/640				503		
9.70 eV	Kr	532	Rhodamine	606.948	202.31	355 nm	Coumarin	485	10 ¹⁴
			610/640				480		

Table S8.	Parameters for the	Vacuum Ultraviolet	Light (VUV)) generation in the	present study.
-----------	--------------------	--------------------	-------------	---------------------	----------------

* 30 Hz

Atom	Х	Y	Z	Atom	Х	Y	Z
		1a				1b	
С	0.886630	0.607560	-0.067750	C	0.891092	-0.599108	0.115372
Н	1.660592	1.008439	0.581228	Н	1.719855	-0.980089	-0.467948
Н	0.654893	1.185008	-0.957892	Н	0.645019	-1.137694	1.023435
0	0.823328	-0.783875	-0.199833	0	0.745243	0.799084	0.159670
N	-0.212101	-0.030758	0.584256	N	-0.190767	-0.013516	-0.613361
0	-1.345009	0.141365	-0.231494	0	-1.395468	-0.086339	0.094124
Н	-1.977110	-0.483420	0.143985	Н	-1.174254	0.105087	1.015461
		2				3a	
С	-1.323754	0.000628	-0.003415	C	1.325951	0.332716	0.000000
Н	-1.662214	0.908829	-0.488488	Н	1.984972	1.194885	0.000000
Н	-1.632081	-0.008988	1.039678	Н	1.491034	-0.277194	0.887654
Н	-1.663517	-0.897955	-0.505448	Н	1.491034	-0.277194	-0.887654
N	0.175101	-0.000088	-0.009105	0	0.000000	0.886104	0.000000
0	0.729030	-1.084952	0.002437	N	-1.045702	-0.047976	0.000000
0	0.730298	1.084322	0.002373	0	-0.700354	-1.173725	0.000000
		3b				4a	
C	-1.415241	0.839957	0.000000	C	1.238765	0.506734	0.000000
Н	-1.927028	-0.122307	0.000000	Н	1.422838	1.565125	0.000000
Н	-1.687889	1.404124	0.890923	Н	2.002884	-0.247231	0.000000
Н	-1.687889	1.404124	-0.890923	N	0.000000	0.129342	0.000000
0	0.000000	0.637028	0.000000	0	-1.041154	0.790466	0.000000
N	0.305280	-0.758702	0.000000	0	-0.173423	-1.281091	0.000000
0	1.457162	-0.938874	0.000000	Н	-1.141703	-1.338691	0.000000

Table S9. Optimized geometrical co-ordinates of CH_3NO_2 isomers depicted in Figure 1

		4b				5a	
0	1.239383	-0.420826	-0.001804	C	0.000000	0.861009	0.000000
Н	1.149652	-1.383889	0.014649	Н	-0.252137	1.457108	0.888030
N	-0.095665	0.108756	-0.000051	Н	-0.252137	1.457108	-0.888030
0	-0.119951	1.324213	0.000534	0	1.301506	0.370945	0.000000
C	-1.080262	-0.744792	-0.000298	Н	1.916224	1.110140	0.000000
Н	-2.073803	-0.335101	0.002068	N	-1.024912	-0.217801	0.000000
Н	-0.880076	-1.800646	-0.004411	0	-0.581201	-1.329170	0.000000
		5b				6a	
С	0.000000	0.897655	0.000000	0	-1.183794	0.580039	-0.000046
Н	-0.253238	1.495959	0.885622	Н	-2.132922	0.411734	-0.000098
Н	-0.253238	1.495959	-0.885622	N	-0.661208	-0.729638	0.000027
0	1.309963	0.470761	0.000000	0	0.636859	-0.598101	0.000020
Н	1.272166	-0.502770	0.000000	C	1.320825	0.506032	0.000053
N	-1.015150	-0.191948	0.000000	Н	0.828411	1.458872	0.000356
0	-0.517418	-1.287191	0.000000	Н	2.383500	0.345165	-0.000559
		6b				7a	
0	1.631855	0.270509	-0.012700	C	-0.775719	0.481150	-0.012211
Н	2.334258	-0.381716	0.086754	Н	-1.318168	1.436027	-0.057367
N	0.487198	-0.553141	-0.005585	0	-1.302864	-0.617194	-0.001139
0	-0.490711	0.313989	0.007493	N	0.562633	0.640157	0.085826
C	-1.740092	-0.026130	0.000886	0	1.345110	-0.513369	-0.012932
Н	-2.012286	-1.069247	-0.015692	Н	0.660383	-1.208058	-0.072378
0	1.631855	0.270509	-0.012700	Н	1.035705	1.448539	-0.285206
		7b				8a	
С	-0.680750	0.355799	0.041169	C	0.000000	0.882569	0.000000
Н	-0.428378	1.426692	0.101580	Н	-0.223909	1.939300	0.000000
0	-1.799675	-0.085881	-0.051994	0	1.307003	0.585208	0.000000
N	0.437672	-0.436275	0.147525	Н	1.381769	-0.381498	0.000000
0	1.664696	0.173013	-0.173938	N	-0.969795	0.059271	0.000000
Н	2.160630	0.169739	0.653120	0	-0.447759	-1.267947	0.000000
Н	0.368377	-1.374355	-0.226935	Н	-1.243247	-1.806200	0.000000

		8b				9a	
С	0.000000	0.609872	0.000000	С	-0.479209	0.425447	-0.000666
Н	-0.935413	1.157868	0.000000	Н	-0.396210	1.500821	-0.048155
0	1.092090	1.397806	0.000000	Н	0.424536	-1.311659	0.072985
Н	1.872567	0.825573	0.000000	0	1.805613	0.096449	-0.010187
N	0.099929	-0.651309	0.000000	N	0.595774	-0.297261	0.030073
0	-1.176949	-1.258887	0.000000	0	-1.678367	-0.213609	-0.071839
Н	-0.957791	-2.194859	0.000000	Н	-2.341459	0.276262	0.424875
		9a				9b	
С	-0.479209	0.425447	-0.000666	С	0.000000	0.811883	0.000000
Н	-0.396210	1.500821	-0.048155	Н	-0.402614	1.813213	0.000000
Н	0.424536	-1.311659	0.072985	Н	-1.812751	0.081445	0.000000
0	1.805613	0.096449	-0.010187	0	-0.552028	-1.434221	0.000000
N	0.595774	-0.297261	0.030073	N	-0.823405	-0.192480	0.000000
0	-1.678367	-0.213609	-0.071839	0	1.324847	0.579764	0.000000
Н	-2.341459	0.276262	0.424875	Н	1.796644	1.417061	0.000000
	1	10a			1	10b	
0	0.848298	-0.968843	-0.001654	0	1.072284	0.749036	0.021805
Н	1.750920	-0.626380	-0.004239	Н	0.759144	1.633113	-0.199040
C	0.037020	0.125447	0.001377	C	0.051166	-0.152753	0.001499
0	0.449419	1.261131	-0.004053	0	0.265416	-1.332608	0.007206
N	-1.267449	-0.246806	0.032702	N	-1.207149	0.413453	-0.067262
Н	-1.957945	0.470205	-0.086571	Н	-1.954125	-0.249511	0.059933
Н	-1.524679	-1.207166	-0.100711	Н	-1.363574	1.307319	0.368854
		11				12	
0	-0.751855	-1.060094	-0.000107	C	0.909804	0.293223	0.124530
Н	-1.653933	-0.716883	-0.000174	Н	1.250577	0.321128	1.161602
C	0.111623	-0.025592	0.000009	Н	1.700829	0.585919	-0.566307
0	-0.548096	1.155082	-0.000009	0	0.322173	-0.986339	-0.186524
N	1.367448	-0.096743	0.000122	N	-0.375513	0.975236	-0.017115
Н	0.125620	1.847053	0.000073	0	-0.980249	-0.344984	0.160334
H	1.686052	-1.059314	0.000117	Н	-0.517027	1.157543	-1.013154

		13			-	14a	
С	0.099547	0.950296	0.000000	0	-1.486320	-0.989692	0.000000
Н	-0.818846	1.557087	0.000000	C	-0.350700	-0.637151	0.000000
Н	0.991271	1.580766	0.000000	0	0.000000	0.677392	0.000000
0	0.099547	-0.030343	1.031932	N	1.410334	0.948421	0.000000
Н	-1.195674	-1.099782	0.000000	Н	1.796883	0.494308	0.824011
0	0.099547	-0.030343	-1.031932	Н	0.528656	-1.306253	0.000000
N	-0.166683	-1.036336	0.000000	Н	1.796883	0.494308	-0.824011
	1	4 b				15	
С	0.099547	0.950296	0.000000	0	0.148438	-0.872370	0.729266
Н	-0.818846	1.557087	0.000000	N	-0.594967	0.104081	0.000000
Н	0.991271	1.580766	0.000000	0	0.148438	-0.872370	-0.729266
0	0.099547	-0.030343	1.031932	C	0.148438	1.365866	0.000000
Н	-1.195674	-1.099782	0.000000	Н	-0.162470	1.917676	0.886846
0	0.099547	-0.030343	-1.031932	Н	1.224067	1.198807	0.000000
N	-0.166683	-1.036336	0.000000	Н	-0.162470	1.917676	-0.886846

Table S10. CCSD/cc-pVTZ optimized coordinates of reactants, intermediates, transition states, and products in the reactions of singlet and triplet carbene (CH₂) with nitrous acid (HONO). Coordinates of CPMCSCF/TZVPP optimized minimal-energy crossing points (MSX).

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ	
	sing	let CH ₂			trip	let CH ₂		
С	0.000000	0.000000	0.175281	C	0.000000	0.000000	0.106441	
Н	0.000000	0.859343	-0.525842	Н	0.000000	0.989354	-0.319322	
Н	0.000000	-0.859343	-0.525842	Н	0.000000	-0.989354	-0.319322	
singlet HONO				triplet 1				
0	0.888952	-0.573744	0.000000	c	-0.703422	0.465188	0.217803	
Н	1.747459	-0.137658	0.000000	Н	-1.243259	1.397994	-0.010050	
N	0.000000	0.512897	0.000000	Н	-0.637825	0.413238	1.326643	
0	-1.107385	0.142167	0.000000	0	-1.422688	-0.609358	-0.169219	
				N	0.628552	0.593146	-0.346559	
				0	1.358026	-0.439684	0.176247	
				Н	2.219041	-0.36204	-0.253721	

Cartesian coordinates of relevant reactants, complexes, transition states, and minimal-energy crossing points (MSX) of **Figure 4**.

	tri	plet 4			trip	olet 6a		
0	-1.027070	-0.811023	0.009968	0	1.672680	-0.054339	-0.015590	
Н	-1.770392	-0.208810	0.139225	Н	1.480097	-1.002314	-0.018551	
N	0.015116	0.091839	-0.269308	N	0.483301	0.578083	-0.005763	
0	-0.159869	1.270735	0.125911	0	-0.457112	-0.456736	0.058947	
C	1.278979	-0.509148	0.026934	C	-1.710965	0.094121	-0.085243	
Н	1.371889	-0.974763	0.997035	Н	-1.826890	1.118835	0.229989	
Н	2.114329	-0.082108	-0.499731	Н	-2.495065	-0.639226	-0.006497	
	trip	olet ts4		triplet ts6a				
0	0.784521	1.055004	0.003569	0	1.358500	0.629226	0.085943	
Н	1.437231	0.812348	0.679540	Н	0.8442770	0.8812780	0.8701670	
N	0.245961	-0.166839	-0.387405	N	0.7407560	-0.4963950	-0.3969530	
0	0.733341	-1.097133	0.169115	0	-0.2611700	-0.7738770	0.2531190	
C	-1.819564	0.086384	0.020554	C	-1.7514290	0.4552610	-0.0507180	
Н	-2.055446	1.037550	0.470569	Н	-1.7086240	0.9058170	-1.0303620	
Н	-2.329025	-0.863298	0.056925	H	-2.5910110	0.1133040	0.5306780	

	triple	et ts4-6a			4-	MSX		
0	-1.566320	-0.303163	0.029730	Ο	1.008126	-0.530378	-0.465869	
Н	-1.764347	0.623849	0.237557	Н	1.7490732	-0.5885061	0.1108797	
N	-0.172762	-0.251306	-0.164302	N	0.0253574	0.1093553	0.2522229	
0	0.369341	0.912340	0.025161	Ο	-0.0212526	1.3882566	-0.0093908	
C	1.449965	-0.502892	0.030065	C	-1.2224616	-0.5364224	0.0365014	
Н	1.756998	-0.553093	1.060968	Н	-1.3514064	-1.0361479	-0.9034760	
Н	2.092724	-0.167678	-0.767924	Н	-2.0462176	-0.0654612	0.5281463	
	6a-	MSX		1-MSX				
0	1.651271	-0.097475	-0.119926	C	0.832242	0.452835	-0.052223	
Н	1.483125	-1.019457	0.004990	Н	1.480895	0.986852	0.628665	
N	0.499985	0.564040	-0.061536	Н	0.632456	1.040080	-0.940424	
0	-0.461209	-0.394606	0.270534	0	1.405106	-0.762521	-0.474534	
C	-1.684289	0.122761	-0.082975	N	-0.36895	0.104836	0.670622	
Н	-1.928696	1.081048	0.332958	0	-1.37034	0.078811	-0.21981	
Н	-2.429064	-0.637352	-0.191580	Н	-2.12019	-0.25657	0.240203	

	sin	glet 1		singlet 4			
С	0.889995	0.603607	-0.064256	0	-0.139214	-1.268610	0.000000
Н	1.676206	0.977975	0.580008	Н	-1.103109	-1.335892	0.000000
Н	0.649171	1.189807	-0.942470	N	0.000000	0.118699	0.000000
0	0.796848	-0.781783	-0.208125	0	-1.062436	0.754645	0.000000
N	-0.204439	-0.042106	0.583854	C	1.223365	0.535820	0.000000
0	-1.331231	0.154604	-0.225854	Н	1.369356	1.599062	0.000000
Н	-1.959215	-0.477251	0.132850	Н	2.006763	-0.197267	0.000000
	sing	glet 6a			singl	et ts1-4	
0	1.164205	0.579670	0.000272	C	-0.766696	0.936488	0.032453
Н	2.110691	0.419643	-0.000218	Н	-1.750655	0.939097	-0.401025
N	0.660411	-0.726737	-0.000321	Н	-0.441167	1.693060	0.740601
0	-0.633468	-0.604995	0.000197	0	-0.745099	-1.077620	0.162394
C	-1.302778	0.509567	-0.000131	N	0.041344	-0.005524	-0.372189
Н	-0.797245	1.453962	-0.001158	0	1.329856	0.118333	0.141162
Н	-2.365547	0.358752	0.000651	Н	1.824528	-0.538126	-0.357423

singlet ts1-6a										
C	1.539495	0.274471	-0.156528							
Н	2.511666	-0.045923	0.184189							
Н	1.318154	1.250046	-0.546640							
Ο	0.532118	-0.589811	-0.014682							
Ν	-0.419629	0.212494	0.519385							
Ο	-1.523402	-0.017917	-0.292779							
Н	-2.199120	0.523425	0.125616							

Cartesian coordinates of reactants, complexes, transition states of Figure S9.

		triplet 4				triplet 6a			
0	-1.02707	-0.81102	0.009968	0	1.67268	-0.05434	-0.01559		
Н	-1.77039	-0.20881	0.139225	Η	1.480097	-1.00231	-0.01855		
Ν	0.015116	0.091839	-0.26931	Ν	0.483301	0.578083	-0.00576		
0	-0.15987	1.270735	0.125911	0	-0.45711	-0.45674	0.058947		
C	1.278979	-0.50915	0.026934	C	-1.71097	0.094121	-0.08524		
Н	1.371889	-0.97476	0.997035	Η	-1.82689	1.118835	0.229989		
Н	2.114329	-0.08211	-0.49973	Η	-2.49507	-0.63923	-0.0065		
	triplet 1				triplet 5b				
C	0	0.70315	0	C	0.599069	0.580663	0.193352		
Η	-0.59335	1.008547	0.878415	Η	1.001189	1.472422	-0.27188		
Η	-0.59335	1.008547	-0.87842	Η	0.515123	0.716492	1.274305		
0	1.172706	1.377651	0	0	-1.52324	-0.43537	0.120741		
Ν	0.195284	-0.73529	0	Ν	-0.7747	0.423586	-0.32124		
0	-1.07743	-1.23994	0	0	1.423802	-0.48581	-0.14842		
Н	-0.94252	-2.19065	0	Η	1.107693	-1.26854	0.307557		
	triple	et CH(OH)NC	ЭH		triple	et CH ₂ NOH	0		
С	0.62214	0.5988	0.14563	C	-1.90657	-0.371972	-0.000004		
Н	0.681559	1.10892	1.097251	Ν	-0.636179	-0.362747	0.000006		
Н	1.294715	-0.9049	-0.78747	0	-0.145691	0.940083	0.000001		
0	1.506898	-0.43037	0.021084	Н	-2.385068	-1.339324	-0.000001		
Ν	-0.62773	0.468649	-0.48189	Н	-2.492777	0.540683	-0.00001		
0	-1.39335	-0.39946	0.278579	Н	0.803679	0.798687	-0.000002		
Η	-2.22339	-0.43873	-0.20767	0	2.641545	-0.343706	-0.000002		

	Triplet	ts 1-CH(OH)	NOH	Triplet ts 1-CH ₂ NOHO				
C	0.6377	0.456443	0.269067	0	1.012776	-1.101448	0.091638	
H	1.024985	-0.58309	0.87651	H	0.391127	-1.771957	-0.195650	
Н	1.029728	1.412612	0.605033	Ν	0.366086	0.082924	-0.259086	
0	1.529128	-0.46621	-0.21977	0	-2.516755	0.047640	0.068193	
Ν	-0.63077	0.54313	-0.36389	C	1.065813	1.093314	0.059921	
0	-1.43202	-0.41115	0.191698	Η	2.033995	0.999665	0.539362	
Н	-2.2424	-0.35126	-0.32416	Н	0.649230	2.062404	-0.168282	
Triplet ts 1-NOH + CH ₂ O					Т	riplet ts 4-5b		
С	-0.946818	0.47011	0.221846	С	-0.59107	1.179026	0.035094	
0	-1.31656	-0.679547	-0.167461	Н	-0.08117	1.961536	-0.49719	
N	0.718251	0.630859	-0.317508	Η	-1.09006	1.344856	0.979276	
0	1.368869	-0.440463	0.155443	0	-0.88784	-1.06424	0.092414	
Н	-1.341172	1.360815	-0.277618	Ν	-0.29049	-0.09068	-0.33401	
Н	-0.722118	0.610289	1.287785	0	1.502153	-0.12167	0.200124	
Н	2.297969	-0.247697	-0.02254	Н	1.836587	-0.25846	-0.69486	
	Triplet	ts 4-CH ₂ NOH	ł0	Triplet ts 5b-CH(OH)NOH				
C	0.364424	1.262683	0.056249	C	0.405917	-0.29426	0.397866	
0	-1.486351	-0.337113	0.142029	Н	0.584905	-0.76798	1.359325	
Ν	0.074127	0.054443	-0.388993	Н	1.357035	0.722433	-0.8767	
Н	-0.27537	2.061493	-0.275136	0	1.553245	0.007907	-0.262	
Н	1.164004	1.405254	0.768068	Ν	-0.66244	0.657722	0.324261	
0	0.949584	-0.879819	0.13448	0	-1.45821	-0.22285	-0.34737	
Η	0.700066	-1.688487	-0.319544	Η	-0.50068	-1.07339	-0.26467	
	Triplet (ts 6a-NOH + (CH ₂ O					
C	-1.780718	0.08108	-0.000122	1				
0	-0.616023	-0.4756	0.000121					
N	0.631391	0.613865	0.000169					
0	1.656366	-0.252474	-0.000053					
Н	-2.245529	0.361002	-0.941262					
Н	-2.245888	0.361024	0.940831					
H	2.433249	0.319035	-0.000569					

		singlet 1				I1	
C	0.889995	0.603607	-0.064256	С	-0.834177	-0.821229	-0.342123
Н	1.676206	0.977975	0.580008	H	-1.600130	-1.122098	0.384209
Н	0.649171	1.189807	-0.942470	H	-0.414659	1.133538	-0.774722
0	0.796848	-0.781783	-0.208125	0	-0.826964	0.822415	0.045148
Ν	-0.204439	-0.042106	0.583854	Ν	0.168429	-0.246745	0.510936
0	-1.331231	0.154604	-0.225854	0	1.316655	-0.035694	-0.237331
Н	-1.959215	-0.477251	0.132850	Н	1.923316	0.349383	0.404169
		P2				I2	
C	0.000000	0.762211	0.000000	C	1.428087	0.607116	0.035748
Н	-0.064007	1.320435	0.925278	Н	-0.865849	-1.109311	0.828761
Н	-0.064007	1.320435	-0.925278	Н	0.575676	1.355247	0.090538
0	-0.635379	-0.502804	0.000000	0	1.131623	-0.533131	-0.051141
Ν	0.744435	-0.455958	0.000000	Ν	-0.911482	-0.740055	-0.121166
				0	-1.187932	0.580436	0.109714
				Н	-1.447507	0.913314	-0.754205
		ts1-I1				ts1-I2	
C	0.851186	-0.810319	0.231942	C	1.153892	0.671539	0.044877
Н	1.618338	-1.122104	-0.476826	Н	0.274294	0.514295	1.133633
Н	0.928400	0.332140	0.986698	Н	0.633388	1.302862	-0.693168
0	0.759736	0.870896	0.006801	0	0.803366	-0.669506	-0.303403
Ν	-0.166730	-0.143104	-0.513143	Ν	-0.263210	-0.306900	0.527921
0	-1.328233	-0.086435	0.246257	0	-1.308044	0.263714	-0.217548
Н	-1.938766	0.377919	-0.333991	Η	-1.951135	-0.451752	-0.237568
		P1					
C	0.867166	0.598150	-0.235015				
Н	1.639430	1.279598	0.106199				
0	0.902812	-0.730431	-0.074526				
N	-0.214068	0.137194	0.545764				
0	-1.329222	0.062005	-0.270622				
Н	-1.932673	-0.481450	0.244729				

Cartesian coordinates of reactant, transition states and products of Figure S10.

		1 a				1a'	
C	0.889995	0.603607	-0.064256	С	-0.889995	0.603607	-0.064256
Н	1.676206	0.977975	0.580008	Н	-1.676206	0.977975	0.580008
Н	0.649171	1.189807	-0.942470	Н	-0.649171	1.189807	-0.942470
0	0.796848	-0.781783	-0.208125	0	-0.796848	-0.781783	-0.208125
N	-0.204439	-0.042106	0.583854	Ν	0.204439	-0.042106	0.583854
0	-1.331231	0.154604	-0.225854	0	1.331231	0.154604	-0.225854
Н	-1.959215	-0.477251	0.132850	Н	1.959215	-0.477251	0.132850
		1b				1b'	
C	0.891092	-0.599108	0.115372	C	-0.891092	-0.599108	0.115372
Н	1.719855	-0.980089	-0.467948	Н	-1.719855	-0.980089	-0.467948
Н	0.645019	-1.137694	1.023435	Н	-0.645019	-1.137694	1.023435
0	0.745243	0.799084	0.159670	0	-0.745243	0.799084	0.159670
N	-0.190767	-0.013516	-0.613361	Ν	0.190767	-0.013516	-0.613361
0	-1.395468	-0.086339	0.094124	0	1.395468	-0.086339	0.094124
Н	-1.174254	0.105087	1.015461	Н	1.174254	0.105087	1.015461

Cartesian	coordinates	of conform	ners of 1	and transiti	on states in	Figure S1	4.

		ts1a-1b			t	s1a'-1b'		
C	-0.900835	-0.586548	-0.155848	C	0.900835	-0.586548	-0.155848	
0	-0.728297	0.806692	-0.126024	Н	1.749184	-0.972299	0.394766	
N	0.178179	-0.048951	0.624629	Н	0.631565	-1.081576	-1.079020	
0	1.383531	-0.137726	-0.121098	0	0.728297	0.806692	-0.126024	
Н	-1.749184	-0.972299	0.394766	N	-0.178179	-0.048951	0.624629	
Н	-0.631565	-1.081576	-1.079020	0	-1.383531	-0.137726	-0.121098	
Н	1.296635	0.564087	-0.776089	Н	-1.296635	0.564087	-0.776089	
		ts1a-1b'		ts1a'-1b				
C	1.054254	0.588319	0.018231	C	-1.054254	0.588320	0.018231	
H	1.524642	0.975222	-0.883997	Н	-1.524642	0.975223	-0.883996	
H	1.468826	0.964582	0.953072	Н	-1.468825	0.964582	0.953072	
0	0.819933	-0.863553	0.003978	0	-0.819933	-0.863553	0.003978	
N	-0.223391	0.136371	-0.028789	N	0.223391	0.136371	-0.028789	
0	-1.555925	0.062853	-0.102326	0	1.555925	0.062853	-0.102326	
H	-1.867318	-0.018718	0.809846	Н	1.867318	-0.018718	0.809846	

Table S11. (Figures 1, 4, S9, S10, S14 energy tables)

Singlet adiabatic B3LYP/cc-pVTZ// CCSD(T)/CBS ionization energies (IE) of CH₃NO₂ isomers depicted in **Figure 1**.

	B3LYP/ cc-pVTZ ^a	E _{zpc} ^b	CCSD(T)/cc- pVDZ	CCSD(T)/cc- pVTZ	CCSD(T)/cc- pVQZ	CCSD(T)/ CBS	IP(eV) ^c
1a	-245.015030	0.049012	-244.371494	-244.623838	-244.699796	-244.742402	9.99
1a+	-244.658487	0.049065	-244.022911	-244.263733	-244.335335	-244.375396	
2	-245.059777	0.049666	-244.413738	-244.662517	-244.739511	-244.782942	11.10
2+	-244.658031	0.045620	-244.025862	-244.260102	-244.331061	-244.370915	
3 a	-245.056860	0.048189	-244.415640	-244.661169	-244.736297	-244.778579	10.50
3a+	-244.679003	0.048150	-244.047622	-244.281954	-244.352805	-244.392584	
3b	-245.056194	0.047871	-244.412242	-244.659105	-244.734403	-244.776754	10.31
3b+	-244.685027	0.047930	-244.052796	-244.287380	-244.358081	-244.397748	
4 a	-245.038672	0.049045	-244.384900	-244.638256	-244.715781	-244.759413	9.57
4a+	-244.694883	0.048176	-244.056591	-244.294335	-244.366452	-244.406968	
4b	-245.028956	0.048099	-244.373019	-244.626918	-244.704529	-244.748201	9.56
4b ⁺	-244.683924	0.047477	-244.044561	-244.283345	-244.355573	-244.396129	
5a	-245.057024	0.047988	-244.416740	-244.665376	-244.742061	-244.785289	8.77
5a+	-244.751333	0.047202	-244.119078	-244.350922	-244.422055	-244.462110	
5b	-245.063650	0.048498	-244.422992	-244.671543	-244.748101	-244.791245	8.90
5b+	-244.751523	0.047411	-244.119344	-244.351777	-244.423001	-244.463099	
6a	-244.977334	0.047504	-244.330346	-244.580384	-244.656400	-244.699126	8.18
6a+	-244.686126	0.046991	-244.050207	-244.286622	-244.357912	-244.397914	
6b	-244.968248	0.046017	-244.319742	-244.569864	-244.645841	-244.688537	7.79
6b+	-244.691591	0.046923	-244.055784	-244.292007	-244.363162	-244.403079	
7a	-245.103306	0.049813	-244.452600	-244.706315	-244.784316	-244.828258	9.50
7a+	-244.760273	0.049383	-244.128761	-244.365626	-244.437990	-244.478704	
7b	-245.101492	0.049815	-244.452600	-244.704589	-244.781964	-244.825541	9.65
7b ⁺	-244.753538	0.048327	-244.120217	-244.356559	-244.428745	-244.469357	
8 a	-245.098367	0.050154	-244.453032	-244.705878	-244.783262	-244.826816	9.66
8a+	-244.755142	0.050127	-244.121532	-244.359048	-244.431326	-244.471960	

		0.040.50.5		A <i>L L L</i> C A <i>L</i> Z Z			0.40
8b	-245.093667	0.049595	-244.446662	-244.699455	-244.776670	-244.820112	9.42
8b ⁺	-244.759451	0.050149	-244.124337	-244.361909	-244.434099	-244.474671	
9a	-245.065029	0.049438	-244.409643	-244.665182	-244.744176	-244.788726	8.38
9a+	-244.767040	0.050439	-244.130344	-244.368390	-244.440859	-244.481603	
9b	-245.064917	0.049909	-244.407645	-244.665197	-244.744987	-244.790005	8.47
9b+	-244.764860	0.050746	-244.128518	-244.366844	-244.439383	-244.480165	
10a	-245.193115	0.051074	-244.545078	-244.799931	-244.878385	-244.922593	10.58
10a+	-244.818175	0.049383	-244.181259	-244.419219	-244.491460	-244.532052	
10b	-245.181771	0.051054	-244.533951	-244.789234	-244.867638	-244.911798	10.74
10b ⁺	-244.798788	0.051110	-244.165817	-244.404199	-244.476462	-244.517054	
11	-245.161752	0.051041	-244.515371	-244.771032	-244.849190	-244.893170	9.94
11+	-244.806940	0.048815	-244.173327	-244.412558	-244.485092	-244.525838	
12	-244.958223	0.050392	-244.316600	-244.569256	-244.644319	-244.686309	9.20
12+	-244.630754	0.049409	-243.992215	-244.236236	-244.307409	-244.347068	
13	-244.991249	0.050197	-244.348821	-244.601980	-244.677497	-244.719776	9.04
13+	-244.668664	0.050293	-244.033121	-244.276314	-244.347846	-244.387776	
14a	-245.093937	0.049447	-244.446876	-244.698545	-244.775006	-244.817976	9.48
14a ⁺	-244.753562	0.047034	-244.117804	-244.354844	-244.426850	-244.467316	
14b	-245.103658	0.050382	-244.458392	-244.709529	-244.785956	-244.828922	9.39
14b ⁺	-244.764737	0.048257	-244.131785	-244.369002	-244.441097	-244.481617	
15	-244.937083	0.047482	-244.295344	-244.545579	-244.619581	-244.660938	10.71
15+	-244.552113	0.045317	-243.917889	-244.157864	-244.226969	-244.265369	

^a B3LYP/cc-pVTZ energy with zero-point energy correction in hartree.

^b zero-point energy by B3LYP/cc-pVTZ in hartree.

^c relative energy by CCSD(T)/CBS with B3LYP/cc-pVTZ zero-point energy correction.

	CCSD/	Ezpe ^b	MCSCF(8,8)/	MCSCF(8,8)/	MCSCF(8,8)/	MRCI/	MRCI/	MRCI/	MRCI/	Ec
	cc-pVTZ +		cc-pVDZ	cc-pVTZ	cc-pVQZ	cc-pVDZ	cc-pVTZ	cc-pVQZ	CBS	(kJ/mol)
	E _{zpc} "									
1a	-244.534823	0.050337	-243.785238	-243.862798	-243.881616	-244.360918	-244.600271	-244.672145	-244.712441	96
1b	-244.528428	0.049677	-243.778046	-243.855889	-243.874290	-244.353671	-244.593205	-244.666163	-244.707186	108
2	-244.570194	0.050701	-243.803629	-243.887336	-243.906971	-244.402571	-244.635515	-244.708239	-244.749332	0
3a	-244.571212	0.049463	-243.831785	-243.906309	-243.924997	-244.406463	-244.638760	-244.709727	-244.749655	-4
3b	-244.570088	0.048840	-243.831305	-243.907327	-243.926296	-244.403337	-244.637104	-244.708266	-244.748274	-2
4a	-244.547014	0.050174	-243.774400	-243.852207	-243.871608	-244.374400	-244.613934	-244.687011	-244.728113	54
4b	-244.535735	0.049369	-243.772013	-243.836820	-243.856768	-244.363929	-244.602207	-244.675384	-244.716599	82
5a	-244.579772	0.049372	-243.841420	-243.917215	-243.936768	-244.408266	-244.644181	-244.716667	-244.757497	-25
5b	-244.584601	0.049810	-243.841704	-243.917285	-243.936867	-244.413046	-244.648694	-244.721055	-244.761810	-35
6a	-244.483961	0.048434	-243.722781	-243.799339	-243.818429	-244.247742	-244.460068	-244.524675	-244.560995	214
6b	-244.474650	0.047035	-243.711527	-243.788954	-243.808247	-244.236096	-244.448502	-244.512993	-244.549231	241
7a	-244.618869	0.051068	-243.866450	-243.931935	-243.951891	-244.442810	-244.680561	-244.754065	-244.795520	-120
7b	-244.618157	0.051055	-243.871658	-243.942112	-243.961604	-244.443465	-244.681625	-244.754700	-244.795850	-121
8a	-244.617846	0.051306	-243.850195	-243.925712	-243.944807	-244.442816	-244.681514	-244.754478	-244.795533	-120
8b	-244.612574	0.050635	-243.845492	-243.921357	-243.940364	-244.436689	-244.675366	-244.748164	-244.789109	-105
9a	-244.575298	0.050563	-243.807166	-243.886074	-243.891373	-244.400519	-244.642151	-244.713432	-244.753246	-11
9b	-244.574649	0.051015	-243.804154	-243.885322	-243.906554	-244.397527	-244.641688	-244.717082	-244.759592	-26
10a	-244.713279	0.052441	-243.962357	-244.041311	-244.061186	-244.534741	-244.776801	-244.851209	-244.893124	-373
10b	-244.702456	0.052332	-243.947538	-244.026141	-244.046044	-244.524712	-244.766793	-244.840938	-244.882675	-346
11	-244.684150	0.052240	-243.930647	-244.009834	-244.029737	-244.440683	-244.659555	-244.726695	-244.861767	-291
12	-244.478600	0.051585	-243.742591	-243.820075	-243.840521	-244.307581	-244.547714	-244.618985	-244.658845	227
13	-244.513491	0.051626	-243.769525	-243.848068	-243.866273	-244.338868	-244.580775	-244.652174	-244.692060	143
14a	-244.611285	0.050753	-243.849080	-243.938174	-243.957238	-244.366001	-244.584619	-244.649875	-244.789288	-105
14b	-244.621125	0.051521	-243.865238	-243.947605	-243.955090	-244.378742	-244.593764	-244.656578	-244.797829	-125
15	-244.455655	0.048469	-243.733080	-243.809614	-243.827374	-244.223779	-244.438305	-244.501519	-244.635073	294

CCSD/cc-pVTZ//MRCI/CBS energies of the CH_3NO_2 isomers (structures in Figure 1) on the adiabatic singlet ground state potential energy surface.

^a CCSD/cc-pVTZ energy with zero-point energy correction in hartree.

^b zero-point energy by CCSD/cc-pVTZ in hartree.

^c relative energy by MRCI/CBS with CCSD/cc-pVTZ zero-point energy correction.

CCSD/cc-pVTZ//CCSD(T)/CBS energies on the adiabatic singlet and triplet ground state potential energy surfaces, of all the reactants, products and transition states depicted in **Figure 4** along with CPMCSCF/TZVPP//CCSD(T)/CBS energies of minimum-energy crossing points (MSX) structures shown in **Figure 4**.

	$CCSD / cc\text{-}pVTZ + E_{zpc}{}^{a}$	E _{zpc} ^b	CCSD(T)/ cc-pVDZ	CCSD(T)/ cc-pVTZ	CCSD(T)/ cc-pVQZ	CCSD(T)/ CBS	E(kJ/mol) ^c
CH ₂ (a ¹ A ₁)+HONO (X ¹ A)	-244.420205	0.037595	-244.249423	-244.494599	-244.569458	-244.611571	37
CH ₂ (X ³ B ₁)+HONO (X ¹ A)	-244.437425	0.038275	-244.268627	-244.511068	-244.584878	-244.626376	0.0
1 (C _s , ³ A')	-244.504471	0.047093	-244.335858	-244.582129	-244.657183	-244.699390	-169
4 (C ₁ , ³ A)	-244.475196	0.046299	-244.306597	-244.555776	-244.632107	-244.675077	-107
6a (C ₁ , ³ A)	-244.474187	0.045524	-244.305905	-244.553256	-244.628191	-244.670280	-96
ts4 (C ₁ , ³ A)	-244.423508	0.040672	-244.258726	-244.501304	-244.575469	-244.617201	30
ts6a (C ₁ , ³ A)	-244.413358	0.040652	-244.249054	-244.491361	-244.565537	-244.607287	56
ts4-6a (C ₁ , ³ A)	-244.374740	0.043295	-244.207746	-244.458558	-244.534051	-244.576396	144
1-MSX ^d		0.051147	-244.336073	-244.583682	-244.658890	-244.701154	-162
4-MSX ^d		0.048862	-244.299105	-244.548461	-244.624713	-244.667622	-80
6a-MSX ^d		0.048063	-244.302303	-244.550287	-244.625431	-244.667639	-83
1 (C ₁ , ¹ A)	-244.534823	0.050337	-244.370826	-244.623586	-244.699706	-244.742407	-273
4 (C _s , ¹ A')	-244.547014	0.050174	-244.384437	-244.638137	-244.715809	-244.759529	-318
6a (C ₁ , ¹ A)	-244.483961	0.048434	-244.330107	-244.580361	-244.656475	-244.699259	-165
ts1-4 (C ₁ , ¹ A)	-244.443859	0.046960	-244.278019	-244.533374	-244.611601	-244.655639	-54
ts1-6a (C ₁ , ¹ A)	-244.460315	0.046698	-244.310816	-244.560315	-244.635760	-244.678119	-114

CCSD/cc-pVTZ//MRCI/CBS energies on the adiabatic singlet and triplet ground state potential energy surfaces, of all the reactants, products and transition states depicted in **Figure 4** along with CPMCSCF/TZVPP//MRCI/CBS energies of minimum-energy crossing points (MSX) structures shown in **Figure 4**.

	CCSD/ cc-pVTZ + E _{zpc} ^a	Ezpc ^b	MCSCF(8,8)/ cc-pVDZ	MCSCF(8,8)/ cc-pVTZ	MCSCF(8,8)/ cc-pVQZ	MRCI/ cc-pVDZ	MRCI/ cc-pVTZ	MRCI/ cc-pVQZ	MRCI/ CBS	E ^e (kJ/mol)
CH ₂ (a ¹ A ₁)+HONO(X ¹ A)	-244.437425	0.038275	-243.6836447	-243.7587897	-243.77778	-244.1870922	-244.3933093	-244.4562052	-244.4915801	0
CH ₂ (X ³ B ₁)+HONO(X ¹ A)	-244.420205	0.037595	-243.6645694	-243.7417896	-243.7612301	-244.1683539	-244.3771584	-244.4409628	-244.4768624	35
$1(\overline{C_{s}}, ^{3}A')$	-244.504471	0.047093	-243.734595	-243.817704	-243.836502	-244.250704	-244.464348	-244.528026	-244.563671	-171
4 (C ₁ , ³ A)	-244.475196	0.046299	-243.689095	-243.764519	-243.783376	-244.218637	-244.429609	-244.494183	-244.530528	-100
6a (C ₁ , ³ A)	-244.474187	0.045524	-243.708141	-243.782962	-243.801725	-244.223971	-244.433790	-244.497470	-244.533250	-101
ts4 (C ₁ , ³ A)	-244.423508	0.040672	-243.656527	-243.729229	-243.747484	-244.169843	-244.374564	-244.437135	-244.472342	45
ts6a (C ₁ , ³ A)	-244.413358	0.040652	-243.663232	-243.736081	-243.754496	-244.167653	-244.373015	-244.435903	-244.471302	54
ts4-6a (C ₁ , ³ A)	-244.374740	0.043295	-243.599313	-243.676663	-243.695457	-244.119888	-244.332170	-244.396023	-244.431834	151
1-MSX ^d		0.051147	-243.744844	-243.818775	-243.837500	-244.251301	-244.461395	-244.525242	-244.561125	-151
4-MSX ^d		0.048862	-243.706456	-243.783223	-243.802418	-244.219465	-244.432200	-244.497195	-244.533763	-86
6a-MSX ^d		0.048063	-243.717685	-243.793613	-243.812502	-244.223099	-244.434345	-244.498461	-244.534485	-86
$\overline{1(C_1, {}^1A)}$	-244.534823	0.050337	-243.7852376	-243.8627984	-243.8816156	-244.2936165	-244.5094119	-244.5743787	-244.6108211	-282
4 (C _s , ¹ A')	-244.547014	0.050174	-243.7743999	-243.852207	-243.8716083	-244.302377	-244.517969	-244.583865	-244.620943	-324
6a (C ₁ , ¹ A)	-244.483961	0.048434	-243.722781	-243.799339	-243.818429	-244.247742	-244.460068	-244.524675	-244.560995	-173
ts1-4 (C ₁ , ¹ A)	-244.443859	0.046960	-243.680617	-243.762085	-243.782733	-244.196747	-244.414723	-244.481450	-244.519008	-59
ts1-6a (C ₁ , ¹ A)	-244.460315	0.046698	-243.709547	-243.786049	-243.804943	-244.229125	-244.441053	-244.505112	-244.541076	-122

^a CCSD/cc-pVTZ energy with zero-point energy correction in hartree.

^b zero-point energy by CCSD/cc-pVTZ in hartree.

^c relative energy by CCSD(T)/CBS with CCSD/cc-pVTZ zero-point energy correction.

^d geometry optimized by CPMCSCF/TZVPP.

erelative energy by MRCI/CBS with CCSD/cc-pVTZ zero-point energy correction.

	$\frac{\text{CCSD /}}{\text{cc-pVTZ} + \text{E}_{\text{zpc}}^{\text{a}}}$	E _{zpc} ^b	CCSD(T)/ cc-pVDZ	CCSD(T)/ cc-pVTZ	CCSD(T)/ cc-pVQZ	CCSD(T)/ CBS	E(kJ/mol) ^c
4 (C ₁ , ³ A)	-244.475196	0.046299	-244.306597	-244.555776	-244.632107	-244.675077	0
6a (C ₁ , ³ A)	-244.474187	0.045524	-244.305905	-244.553256	-244.628191	-244.670280	11
1 (C _s , ³ A')	-244.504471	0.047093	-244.335858	-244.582129	-244.657183	-244.699390	-62
5b (C ₁ , ³ A)	-244.551009	0.049854	-244.386829	-244.6343914	-244.7103874	-244.7531863	-196
CH(OH)NOH (C ₁ , ³ A)	-244.514055	0.048044	-244.344688	-244.594919	-244.671307	-244.714279	-98
CH ₂ NOH-O (C ₁ , ³ A)	-244.463806	0.046034	-244.3027293	-244.5402374	-244.6122099	-244.6526365	58
NOH (C _s , ³ A'')+ CH ₂ O(C _{2v} , ¹ A ₁)	-244.521494	0.041185	-244.352393	-244.593661	-244.667192	-244.708542	-111
ts1- CH(OH)NOH (C ₁ , ³ A)	-244.450822	0.043024	-244.278702	-244.528733	-244.6047828	-244.647591	64
ts1-CH ₂ NOH-O (C ₁ , ³ A)	-244.461103	0.046126	-244.299813	-244.538397	-244.610685	-244.651288	62
ts1-(³ NOH+ ¹ CH ₂ O) (C ₁ , ³ A)	-244.485895	0.045042	-244.319740	-244.565172	-244.639917	-244.681944	-21
ts4-5b (C ₁ , ³ A)	-244.456756	0.042897	-244.289900	-244.536365	-244.612498	-244.655427	-64
ts4-CH ₂ NOH-O (C ₁ , ³ A)	-244.434055	0.044920	-244.269211	-244.5137523	-244.5883417	-244.630294	114
ts5b- CH(OH)NOH (C ₁ , ³ A)	-244.469312	0.043343	-244.301972	-244.550091	-244.625585	-244.668024	11
ts6a-(³ NOH+ ¹ CH ₂ O) (C ₁ , ³ A)	-244.459467	0.042691	-244.292215	-244.537334	-244.611818	-244.653678	47

CCSD/cc-pVTZ//CCSD(T)/CBS energies on the adiabatic triplet ground state potential energy surface, of all the reactants, products and transition states, illustrated in **Figure S9**.

	$\begin{array}{c} \text{CCSD/} \\ \text{cc-pVTZ} + \text{E}_{\text{zpc}} \\ \\ a \end{array}$	$E_{zpc}{}^{b}$	MCSCF(8,8)/ cc-pVDZ	MCSCF(8,8)/ cc-pVTZ	MCSCF(8,8)/ cc-pVQZ	MRCI/ cc-pVDZ	MRCI/ cc-pVTZ	MRCI/ cc-pVQZ	MRCI/ CBS	E ^d (kJ/mol)
4 (C ₁ , ³ A)	-244.475196	0.046299	-243.689095	-243.764519	-243.783376	-244.218637	-244.429609	-244.494183	-244.530528	0
6a (C ₁ , ³ A)	-244.474187	0.045524	-243.708141	-243.782962	-243.801725	-244.223971	-244.433790	-244.497470	-244.533250	-1
1 (C _s , ³ A')	-244.504471	0.047093	-243.734595	-243.817704	-243.836502	-244.250704	-244.464348	-244.528026	-244.563671	-71
5b (C ₁ , ³ A)	-244.551009	0.049854	-243.751721	-243.827188	-243.846429	-244.294660	-244.503443	-244.567677	-244.603868	-196
CH(OH)NOH(C ₁ , ³ A)	-244.514055	0.048044	-243.740163	-243.816235	-243.835622	-244.261677	-244.473716	-244.539071	-244.575907	-103
CH ₂ NOH-O(C ₁ , ³ A)	-244.463806	0.046034	-243.729073	-243.798633	-243.816916	-244.227043	-244.428643	-244.489961	-244.524429	41
NOH(C _s , ³ A'')+ CH ₂ O (C _{2v} , ¹ A ₁)	-244.521494	0.041185	-243.780373	-243.853184	-243.872021	-244.277465	-244.482447	-244.545022	-244.580222	-121
ts1-CH(OH)NOH (C ₁ , ³ A)	-244.450822	0.043024	-243.667928	-243.742239	-243.761011	-244.192596	-244.403082	-244.467136	-244.503145	61
ts1-CH2NOH-O (C ₁ , ³ A)	-244.461103	0.046126	-243.749086	-243.818008	-243.8153182	-244.230857	-244.433174	-244.487990	-244.518033	50
ts1-(³ NOH+ ¹ CH ₂ O) (C ₁ , ³ A)	-244.485895	0.045042	-243.727141	-243.801072	-243.819809	-244.237532	-244.445326	-244.508622	-244.544213	-28
ts4-5b (C ₁ , ³ A)	-244.456756	0.042897	-243.675828	-243.747775	-243.766535	-244.200447	-244.407460	-244.471088	-244.506930	46
ts4-CH ₂ NOH-O (C ₁ , ³ A)	-244.434055	0.044920	-243.668701	-243.741182	-243.759691	-244.187209	-244.393768	-244.456614	-244.491942	103
ts5b-CH(OH)NOH (C ₁ , ³ A)	-244.469312	0.043343	-243.698747	-243.773136	-243.792001	-244.217848	-244.428104	-244.492262	-244.528351	5
ts6a-(³ NOH+ ¹ CH ₂ O) (C ₁ , ³ A)	-244.459467	0.042691	-243.690812	-243.778355	-243.767339	-244.209448	-244.419810	-244.473773	-244.502958	45

CCSD/cc-pVTZ//MRCI/CBS energies on the adiabatic triplet ground state potential energy surface, of all the reactants, products and transition states depicted in **Figure S9**.

^a CCSD/cc-pVTZ energy with zero-point energy correction in hartree.

^b zero-point energy by CCSD/cc-pVTZ in hartree.

^c relative energy by CCSD(T)/CBS with CCSD/cc-pVTZ zero-point energy correction.

^d relative energy by MRCI/CBS with CCSD/cc-pVTZ zero-point energy correction.

	$\frac{\text{CCSD} /}{\text{cc-pVTZ} + \text{E}_{\text{zpc}}^{\text{a}}}$	Ezpc ^b	CCSD(T)/ cc-pVDZ	CCSD(T)/ cc-pVTZ	CCSD(T)/ cc-pVQZ	CCSD(T)/ CBS	E(kJ/mol) ^c
1 (C ₁ , ¹ A)	-244.534823	0.050337	-244.370826	-244.623586	-244.699706	-244.742407	0
I1 (C ₁ , ¹ A)	-244.432415	0.048383	-244.269008	-244.520782	-244.596343	-244.638702	267
I2 (C ₁ , ¹ A)	-244.474634	0.046559	-244.331929	-244.576462	-244.651977	-244.694557	116
ts1-I1 (C ₁ , A)	-244.420224	0.04419	-244.248507	-244.499638	-244.575137	-244.617475	292
ts1-I2 (C ₁ , A)	-244.404712	0.043958	-244.238921	-244.490302	-244.565824	-244.608169	336
P2 (C_s , ² A'') + OH	-244.460501	0.041484	-244.288237	-244.533708	-244.607452	-244.648799	223
H (C ₁ , ² A) +	-244.375706	0.03702	-244.203678	-244.449752	-244.524598	-244.566671	427

CCSD/cc-pVTZ//CCSD(T)/CBS energies on the adiabatic singlet ground state potential energy surface, of all the reactants, products and transition states shown in **Figure S10**.

CCSD/cc-pVTZ//MRCI/CBS energies on the adiabatic singlet ground state potential energy surface, of all the reactants, products and transition states shown in **Figure S10**.

	CCSD/		MCSCF(8,8)/	MCSCF(8,8)/	MCSCF(8,8)/	MRCI/	MRCI/	MRCI/	MRCI/	Ed
	$\begin{array}{c} \text{cc-pVTZ} + \mathrm{E}_{zpc} \\ \\ a \end{array}$	E _{zpc} ^b	cc-pVDZ	cc-pVTZ	cc-pVQZ	cc-pVDZ	cc-pVTZ	cc-pVQZ	CBS	(kJ/mol)
1 (C ₁ , ¹ A)	-244.534823	0.050337	-243.785238	-243.862798	-243.881616	- 244.293616	_ 244.509412	_ 244.574379	<u>-</u> 244.712441	0
I1 (C ₁ , ¹ A)	-244.432415	0.048383	-243.655909	-243.732689	-243.751351	244.183202	- 244.396195	- 244.460259	244.604531	278
l2 (C ₁ , ¹ A)	-244.474634	0.046559	-243.727256	-243.798045	-243.816431	- 244.250359	- 244.455965	- 244.519697	- 244.664665	115
ts1-I1 (C ₁ , A)	-244.420224	0.04419	-243.657375	-243.732713	-243.751143	244.172803	_ 244.385524	- 244.449648	_ 244.591978	300
ts1-12 (C ₁ , A)	-244.404712	0.043958	-243.628165	-243.688749	-243.707287	244.152314	- 244.359782	- 244.423636	- 244.570769	355
P2 (C _s , ² A'') + OH	-244.460501	0.041484	-243.706104	-243.779710	-243.798395	- 244.209245	- 244.417198	- 244.479701	244.618303	224
(C ₁ , ² A) + H	-244.375706	0.03702	-243.606915	-243.681784	-243.700253	244.120570	244.329405	- 244.393004	- 244.533158	436

^a CCSD/cc-pVTZ energy with zero-point energy correction in hartree.

^b zero-point energy by CCSD/cc-pVTZ in hartree.

^c relative energy by CCSD(T)/CBS with CCSD/cc-pVTZ zero-point energy correction.

^d relative energy by MRCI/CBS with CCSD/cc-pVTZ zero-point energy correction.

CCSD/cc-pVTZ//CCSD(T)/CBS energies on the adiabatic singlet ground state potential energy surface, of all the conformers of **1** shown in **Figure S14**.

	$\frac{\text{CCSD}}{\text{cc-pVTZ} + \text{E}_{\text{zpc}}}$	E _{zpc} ^b	CCSD(T)/ cc-pVDZ	CCSD(T)/ cc-pVTZ	CCSD(T)/ cc-pVQZ	CCSD(T)/ CBS	E ^c (kJ/mol)
1a	-244.534823	0.050337	-244.3708256	-244.623586	-244.6997056	-244.7424069	0
1a'	-244.534823	0.050337	-244.3708256	-244.623586	-244.6997056	-244.7424069	0
1b	-244.528428	0.049677	-244.3636847	-244.6165918	-244.6925859	-244.7351972	17
1b'	-244.528428	0.049677	-244.3636847	-244.6165918	-244.6925859	-244.7351972	17
ts1a1b	-244.528509	0.049166	-244.3635023	-244.6161161	-244.6920226	-244.7345848	18
ts1a'1b'	-244.528509	0.049166	-244.3635023	-244.6161161	-244.6920226	-244.7345848	18
ts1a1b'	-244.432741	0.049174	-244.2645138	-244.5193466	-244.5964529	-244.6397497	267
ts1a'1b	-244.432741	0.049174	-244.2645138	-244.5193466	-244.5964529	-244.6397497	267

CCSD/cc-pVTZ//MRCI/CBS energies on the adiabatic singlet ground state potential energy surface, of all the conformers of **1** shown in **Figure S14**.

	CCSD/	T. h	MCSCF(8,8)/	MCSCF(8,8)/	MCSCF(8,8)/	MRCI/	MRCI/	MRCI/	MRCI/	E^{d}
	$cc-pVTZ + E_{zpc}$ a	Ezpe	cc-pVDZ	cc-pVTZ	cc-pVQZ	cc-pVDZ	cc-pVTZ	cc-pVQZ	CBS	(kJ/mol)
1a	-244.534823	0.050337	-243.785238	-243.862798	-243.881616	-244.360918	-244.600271	-244.672145	-244.712441	0
1a'	-244.534823	0.050337	-243.785238	-243.862798	-243.881616	-244.360918	-244.600271	-244.672145	-244.712441	0
1b	-244.528428	0.049677	-243.778046	-243.855889	-243.874290	-244.353671	-244.593205	-244.666163	-244.707186	12
1b'	-244.528428	0.049677	-243.778046	-243.855889	-243.874290	-244.353671	-244.593205	-244.666163	-244.707186	12
ts1a1b	-244.528509	0.049166	-243.781420	-243.856855	-243.875215	-244.355482	-244.594325	-244.665816	-244.705870	14
ts1a'1b'	-244.528509	0.049166	-243.781420	-243.856855	-243.875215	-244.355482	-244.594325	-244.665816	-244.705870	14
ts1a1b'	-244.432741	0.049174	-243.675986	-243.755593	-243.774992	-244.254351	-244.495783	-244.568623	-244.609499	267
ts1a'1b	-244.432741	0.049174	-243.675986	-243.755593	-243.774992	-244.254351	-244.495783	-244.568623	-244.609499	267

^a CCSD/cc-pVTZ energy with zero-point energy correction in hartree.

^b zero-point energy by CCSD/cc-pVTZ in hartree.

^c relative energy by CCSD(T)/CBS with CCSD/cc-pVTZ zero-point energy correction.

^d relative energy by MRCI/CBS with CCSD/cc-pVTZ zero-point energy correction.

References

(1) Jones, B. M.; Kaiser, R. I. Application of Reflectron Time-of-Flight Mass Spectroscopy in the Analysis of Astrophysically Relevant Ices Exposed to Ionization Radiation: Methane (CH4) and D4-Methane (CD4) as a Case Study. *J. Phys. Chem. Lett.* **2013**, *4*, 1965-1971.

(2) Maity, S.; Kaiser, R. I.; Jones, B. M. Formation of complex organic molecules in methanol and methanol–carbon monoxide ices exposed to ionizing radiation – a combined FTIR and reflectron time-of-flight mass spectrometry study. *Phys. Chem. Chem. Phys.* **2015**, *17*, 3081-3114.

(3) Gerakines, P. A.; Hudson, R. L. Infrared Spectra and Optical Constants of Elusive Amorphous Methane. *ApJ* 2015, *805*, L20.

(4) Fulvio, D.; Sivaraman, B.; Baratta, G. A.; Palumbo, M. E.; Mason, N. J. Novel Measurements of Refractive Index, Density and Mid-Infrared Integrated Band Strengths for Solid O_2 , N_2O and NO_2 : N_2O_4 Mixtures. *Spectrochim. Acta A* **2009**, *72*, 1007-1013.

(5) Drouin, D.; Couture, A. R.; Joly, D.; Tastet, X.; Aimez, V.; Gauvin, R. CASINO V2.42—A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users. *Scanning* **2007**, *29*, 92-101.

(6) Purvis, G. D.; Bartlett, R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. *J. Chem. Phys.* **1982**, *76*, 1910-1918.

(7) Knowles, P. J.; Hampel, C.; Werner, H. J. Coupled Cluster Theory for High Spin, Open Shell Reference Wave Functions. *J. Chem. Phys.* **1993**, *99*, 5219-5227.

(8) Peterson, K. A.; Woon, D. E.; Jr., T. H. D. Benchmark Calculations with Correlated Molecular Wave Functions. IV. The Classical Barrier Height of the $H+H_2\rightarrow H_2+H$ Reaction. J. Chem. Phys. **1994**, 100, 7410-7415.

(9) Peterson, K. A.; Dunning, T. H. Intrinsic Errors in Several Ab Initio Methods: The Dissociation Energy of N₂. J. Phys. Chem. **1995**, 99, 3898-3901.

(10) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; W. Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler, T. B.; Amos, R. D.; Bennie, S. J.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Lee, S. J. R.; Liu, Y.; Lloyd, A. W.; Ma, Q.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Miller III, T. F.; Mura, M. E.; Nicklass, A.; O'Neill, D. P.; Palmieri, P.; Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.; and Welborn, M. Molpro: A General-Purpose Quantum Chemistry Program Package. *WIREs Comput. Mol. Sci.* 2012, *2*, 242--253.

(11) Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., *Gaussian 16, Revision C.01, Gaussian Inc., Wallingford CT, 2016.*

(12) Bennett, C. J.; Brotton, S. J.; Jones, B. M.; Misra, A. K.; Sharma, S. K.; Kaiser, R. I. High-Sensitivity Raman Spectrometer To Study Pristine and Irradiated Interstellar Ice Analogs. *Anal. Chem.* **2013**, *85*, 5659-5665.

(13) Kaiser, R. I.; Maity, S.; Jones, B. M. Infrared and Reflectron Time-of-Flight Mass Spectroscopic Analysis of Methane (CH₄)–Carbon Monoxide (CO) Ices Exposed to Ionization Radiation – Toward the Formation of Carbonyl-Bearing Molecules in Extraterrestrial Ices. *Phys. Chem. Chem. Phys.* **2014**, *16*, 3399-3424.

(14) Kagann, R. H.; Maki, A. G. Infrared Absorption Intensities of Nitrous Acid (HONO) Fundamental Bands. J. Quant. Spectrosc. Radiat. Transfer **1983**, *30*, 37-44.

(15) Ulenikov, O. N.; Bekhtereva, E. S.; Albert, S.; Bauerecker, S.; Niederer, H. M.; Quack, M. Survey of the high resolution infrared spectrum of methane (¹²CH₄ and ¹³CH₄): Partial Vibrational Assignment Extended Towards 12 000 cm⁻¹. *J. Chem. Phys.* **2014**, *141*, 234302.

(16) He, J.; Gao, K.; Vidali, G.; Bennett, C. J.; Kaiser, R. I. Formation of Molecular Hydrogen From Methane Ice. *ApJ* **2010**, *721*, 1656-1662.