Gas-phase Formation of 1-Methylcyclopropene and 3-Methylcyclopropene via the Reaction of the Methylidyne Radical (CH; X²Π) with Propylene (CH₃CHCH₂; X¹A')

Chao He,^a Aaron M. Thomas,^a Galiya R. Galimova,^{b,c} Alexander M. Mebel,^{b,c,*} Ralf I. Kaiser^{a,*}

^a Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States

^b Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States ^c Samara National Research University, Samara 443086, Russia

Supporting Information

Potential energy surface (PES) figures for isotopic reactions of $CD + CH_3CHCH_2$, $CH + CD_3CHCH_2$, and $CD + CD_3CHCH_2$.

^{*} Corresponding Authors: Prof. Ralf I. Kaiser: <u>ralfk@hawaii.edu</u> Prof. Alexander M. Mebel: <u>mebela@fiu.edu</u>

Figure S1. Portion of the C_4H_6D potential energy surface (PES) following CD radical addition to the carbon-carbon double bond of propylene. Energies are given for the fully hydrogenated reactant; energies of the (partially) deuterated species differ by a few kJ mol⁻¹ at most.

Figure S2. Portion of the C_4H_6D PES corresponding to CD radical insertion into the terminal C-H bond of propylene. Energies are given for the fully hydrogenated reactant; energies of the (partially) deuterated species differ by a few kJ mol⁻¹ at most.

Figure S3. Portion of the C_4H_6D PES corresponding to CD radical insertion into the middle C–H bond of propylene. Energies are given for the fully hydrogenated reactant; energies of the (partially) deuterated species differ by a few kJ mol⁻¹ at most.

Figure S4. Portion of the C_4D_6H PES following CH radical addition to the carbon-carbon double bond of propylene-d₆. Energies are given for the fully hydrogenated reactant; energies of the (partially) deuterated species differ by a few kJ mol⁻¹ at most.

Figure S5. Portion of the C_4D_6H PES corresponding to CH radical insertion into the terminal C-D bond of propylene-d₆. Energies are given for the fully hydrogenated reactant; energies of the (partially) deuterated species differ by a few kJ mol⁻¹ at most.

Figure S6. Portion of the C₄D₆H PES corresponding to CH radical insertion into the middle C–D bond of propylene-d₆. Energies are given for the fully hydrogenated reactant; energies of the (partially) deuterated species differ by a few kJ mol⁻¹ at most.

Figure S7. Portion of the $C_4D_4H_3$ PES following CD radical addition to the carbon-carbon double bond of propylene-3,3,3-d₃. Energies are given for the fully hydrogenated reactant; energies of the (partially) deuterated species differ by a few kJ mol⁻¹ at most.

Figure S8. Portion of the $C_4D_4H_3$ PES corresponding to CD radical insertion into the terminal C-H/C-D bond of propylene-3,3,3-d₃. Energies are given for the fully hydrogenated reactant; energies of the (partially) deuterated species differ by a few kJ mol⁻¹ at most.

Figure S9. Portion of the $C_4D_4H_3$ PES corresponding to CD radical insertion into the middle C–H bond of propylene-3,3,3-d₃. Energies are given for the fully hydrogenated reactant; energies of the (partially) deuterated species differ by a few kJ mol⁻¹ at most.