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We report a facile yet effective strategy of utilizing a combination of Fourier transform-infrared
spectroscopy (FTIR) and multi-label algorithms, through which multi-components in polymer bonded
explosives (PBXs) could be rapidly and simultaneously identified with high accuracy. The explosive
components include 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclo-octane (HMX), hexahydro-1,3,5-trinitro-
1,3,5-triazine (RDX), 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) and 2,4,6-trinitrotoluene (TNT) involved
in single-component, binary-component and ternary-component PBXs. The train set contains 354 FTIR
spectra of the explosives while the independent test set contains 84. Two multi-label strategies (viz., data
decomposition and algorithm adaptation) were adopted to construct the classification model with an
objective of testing their efficiency in the multi-classification application. Principal component analysis
(PCA) was applied to reduce the variables. Both the two algorithms exhibit excellent performance with
100% accuracy for the training and the independent test sets. However, for real PBX samples, the

performance of the algorithm adaptation strategy is sharply decreased to 40% accuracy. But, it is
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Accepted 24th December 2015 noteworthy that the data decomposition strategy still achieves the accuracy of 100% for the real

samples, exhibiting stronger robustness for the background interference and high promise in practice.
The strategy proposed by the work would provide valuable information for advancing analytical methods
in the explosive detection system and the other complicated samples.
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1. Introduction

There is a growing need to develop facile analysis methods to
detect various explosives due to recent increase in terrorism
activity."” In the past decades, many analytical methods based
on instrumental techniques have been developed to determine
the explosives, involving Raman spectroscopy,®® laser-
induced breakdown spectroscopy,”™ ion mobility spectrom-
etry,"”” ™ mass spectrometry,”*™” and terahertz spectroscopy,*®*
gas chromatography,”*** high performance liquid chromatog-
raphy**** and so on. As reported, these instrumental methods
are highly selective and sensitive. However, most of the devices
are rather bulky, expensive and time-consuming, which
impedes quick and on-line determination. Thus, it is highly
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desired to develop new methods or improve the existing tech-
niques to enable faster, less expensive and simpler identifica-
tion on the explosives.

As known, Fourier transform infrared spectroscopy (FTIR) is
arelatively simple, rapid and nondestructive technique with low
running costs in qualitative determination and has been
extensively used in many fields including explosives.****” The
technique provides fingerprint-like signatures of samples,
resulting in diverse and complicated spectra. Consequently, it is
difficult for FTIR to directly determine mixtures due to over-
lapped absorption band resulted from multiple components,
which limits its further application in complicated systems,
including mixture explosives.

Chemometrics methods®®*® possess significant advantages
in resolving the band overlaps from different components
through mathematical separation instead of chemical separa-
tion. They have been successfully applied in the analysis of the
complicated samples without pre-separation, including quali-
tative and quantitative determinations.>*** Recently, introduc-
tion of chemometrics methods to assist the determination of
the explosives has aroused growing interest.**** However, the
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previous works regarding the qualitative identification on the
explosives mainly focused on the classification of single-
component explosives with the aid of chemometrics
methods,*?”° while the mixture explosives were far less
studied. With respect to the single-component explosives, the
interference from multiple components of the mixture explo-
sives would lead to more complicated signatures. Thus, it is
necessary to introduce some other advanced chemometrics
methods to deal with the simultaneous identification on the
multiple components of the mixture explosives.

Pattern recognition methods used in the classification issue
generally involve in two main strategies: single-label algorithm
and multi-label one. The single-label classification deals with
the instances that are associated with only one single label,
while the multi-label classification®®** is an extension of tradi-
tional single label, in which the instances are associated with
a number of labels simultaneously. Compared to the single-
label classification, the multi-label learning exhibited more
widely applications in real world, especially for multi-
component identifications in many complicated cases, for
example, text categorizations,*** scene,* video annotation,*
classifications in chemical systems, biological systems**° and
medical diagnosis.**** In general, the multi-label identification
can be performed via two algorithm strategies. One is data
decomposition,®>** which splits the multi-label dataset into
several single-label subsets and then combines the single-label
derived from sub-classifiers on the subsets to give the identifi-
cation result of the multicomponent samples. The other
strategy is algorithm adaptation.*** It uses the existing
machine learning algorithm to tackle the multi-label prediction
only by means of one single-classifier, which could simulta-
neously give multi-label information. The two strategies have
been successfully applied in the multicomponent identification
for some complicated systems.**"*

Although a few previous works regarding the qualitative
analysis of the explosives partly involved in some mixture
explosives,”®*” they mainly concerned if these mixture samples
were explosives or non-explosives, rather than the components
comprising the explosives, thus, still belonging to the single-
label classification. However, as known, the component
compositions of the mixture explosives are closely associated
with their explosion performances.

Based on the consideration above, we, herein, combined
Fourier transform-infrared spectroscopy with the two multi-
label strategies to develop a simple, quick and accurate
method to realize simultaneous identification on the multiple
components of the mixture explosives like polymer bonded
explosives (PBXs). PBX is one kind of high-energy explosives
that contains one to three energetic compounds (e.g., HMX,
RDX, TATB, TNT) as main components and a small quantity of
organic compounds (e.g., stabilizers, plasticizers, waxes, oils) as
fillers.>”*® It has been widely used due to their high energy
density, mechanical strength and low sensitivity. Thereby, the
identification on their components has emerged as an impor-
tant task in industry and homeland security fields.*** We
selected and designed a series of single-component, binary-
component and triple-component PBXs, involving in HMX
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(cyclotetramethylene tetranitramine), RDX (cyclo-
trimethylenetrinitramine), TATB (triamino trinitrobenzene)
and TNT (trotyl), which are four of the most widely used
secondary explosive ingredients in PBXs.**** Consequently, 354
infrared spectra of the train dataset and 84 infrared spectra of
the independent set were measured and constructed, which
covered diverse composition proportion of the energetic
components. The two multi-label strategies mentioned above
were used to establish the identification model between the
component label of the explosives and the infrared spectral
features of the PBXs by means of two well-accepted multi-label
algorithms (viz., BR-SVM**** and Rank-CVMz algorithm®). The
results from the two algorithms were compared in order to
assess their performances in the multi-label classification.
Finally, the optimized models were applied to five real PBX
samples. The results indicate that the multi-label algorithm
based on the data decomposition strategy possess stronger
robustness for the real samples than the algorithm adaptation
strategy, at least for the mixture explosives. Thereby, a simple,
quick and accurate method could be developed for the simul-
taneous detection on the multiple components of the PBXs by
the FTIR spectroscopy coupled with the multi-label identifica-
tion method, which potentially complement the explosive
detection systems.

2. Materials and methods
2.1 The dataset construction

Considering that the real PBXs usually contain one to three
energetic components, we constructed the data set by designing
single-component, binary-component and ternary-component
explosives based on pure HMX, RDX, TATB, and TNT analytes,
which were provided by the Yinguang Chemical Plant, China.
Similar to triangular mixture design strategy,**°® a series of
mixture samples with different mass percentages were
prepared, as illustrated by Fig. 1. For example, the single-
component explosives containing only one pure analyte were
displayed at the poles of the triangle, in which A, B and C poles
denote three of the four pure analytes. The binary-component
samples containing seven different mass percentages of two
pure analytes were displayed on the sides of the triangle. Six
permutations of the two components from the four pure ana-
Iytes lead to 42 formulations of the binary-component explosive
samples. For the ternary-component explosive mixtures, we
considered four permutations of three components from the
four pure analytes, which were in general involved in real PBXs.
Each of the four types of the ternary-component mixtures covers
twenty-five formulations in the mass percentages, as displayed
inside the triangle in Fig. 1, leading to 100 ternary-component
samples. Consequently, a total of 146 explosive samples were
produced, which could efficiently represent the space of
possible combinations of these ingredients, as reflected by
Fig. 1. The set of samples was randomly divided into the two
data subsets. The train set was composed of 354 spectra with 3
spectra per sample for the 118 samples, which include 4 single-
component explosives, 30 binary-component mixtures and 84
ternary-component mixtures. The independent test set was
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Fig. 1 [llustration of sample distribution of the data set measured by
FTIR. The A, B and C poles denote the three pure single-component
explosive of the four analytes (HMX, RDX, TATB and TNT). The values
0 and 1 denote 0% and 100% mass percentage, respectively. The value
between 0 and 1 represents the relative percentage in mass of the
related analyte. For example, the sample labelled as 20 contains 20%
component A, 60% component B, and 20% component C.

consisted of 84 spectra of 28 samples with 3 spectra per sample,
including 12 binary-component mixtures and 16 ternary-
component mixtures. In addition, five real polymer bonded
explosives (PBXs) involved in the four analytes with inclusion of
adhesives were also offered in order to validate application of
the optimized models in practice. The data sets are available in
the attachment file.

2.2 FT-IR spectroscopic measurements and data pre-
processing

A FT-IR spectrometer (Nicolet 5700) equipped with a diffuse
reflection accessory was applied for the spectral scanning and
the infrared spectra (IR) were collected in the Kubelka-Munk
(K-M) mode. Samples were made by mixing explosives and
potassium bromide (KBr) with 1 : 10, and then the samples were
ground to fine powder and were put into the cuvette with
a surface roughness. The wavenumbers were in the range of
4000-400 cm ™' with the resolution 4.0 cm™", and each spec-
trum was the average of 64 scans in order to obtain a good
signal-to-noise ratio. Besides, the cuvette was emptied and
treated with ethanol to avoid cross-contamination between
different samples, and each sample was scanned 3 times par-
allelly to ensure the reproducibility.

The quality of infrared spectra strongly influences the
performance of the analysis. Hence, pretreatment of infrared
spectra should be taken carefully to get repeatable and
reasonable results. In the work, baseline elimination and
Savitzky—-Golay smoothing with 5 segments were used to
suppress baseline drift and additive noise. The pretreatments
were performed using “OMNIC 5.0” software implemented in
the instrument. In addition, min-max normalization was
applied to eliminate the random error and accelerate the
calculation convergence as well as eliminate the effects of
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different samples thickness, which makes the data-processing
more convenient.

2.3 Multivariate analysis

2.3.1 Principal component analysis (PCA). Variable selec-
tion in multivariate analysis is a critical step to reduce collin-
earity and overlap. Principal component analysis (PCA)*® is
the most widely used technique in variable extraction and
dimension reduction. PCA transforms original variables into
a few new variables called principal components (PCs). Each PC
is a linear combination of the original variables, and they are
orthogonal mutually. The differences and similarities among
samples could be primarily visualized by means of projecting
the data to a coordinate system defined by the two or three
largest principal components. In general, the first principal
component expresses the most variance in the data, and a few
large principal components can explain most of the
information.

2.3.2 Support vector machine (SVM). SVM® is a supervised
classification algorithm which is adapted at the limited samples
and less susceptible to over-fitting. SVM algorithm directly
seeks the best balance between learning ability and model
complexity. The input vectors are mapped from nonlinear space
to higher dimensional space, a maximal separating hyperplane
is constructed to separates two parallel hyperplanes on each
class margin with a maximizes distance. The SVM software is
implemented from the LIBSVM package” which can be freely
downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm.

2.3.3 Multi-label classification. To date, there mainly exist
two strategies for the multi-label classification: data decompo-
sition and algorithm adaptation.*? In general, the data decom-
position strategy®>**”* splits the multi-label data set to one or
more single-label subsets (binary or multi-class), and then
trains a sub-classifier for each subset using an existing machine
learning algorithm (for example, SVM, KNN or PLS-DA). Finally,
all sub-classifiers are combined into an entire multi-label
output. In the work, we adopted Binary Relevance (BR)%
method to realize the multi-label classification of the data
decomposition strategy since it is one well-accepted algorithm,
which could transfer the multi-label learning problem to several
binary classification ones in terms of one-vs.-all strategy.
Herein, the SVM algorithm was adopted in the BR strategy
(labelled as BR-SVM). The algorithm adaptation strategy
extends a specific multi-class algorithm to consider all compo-
nent labels of every sample simultaneously.>**>7>”* Accordingly,
some extended machine learning algorithms would be used in
the algorithm adaptation strategy. In the work, we selected an
extended CVM algorithm Rank-CVMz* (core vector machine
with a zero label) as one representative, which adds a zero label
as a benchmark label to distinguish related and unrelated
marking. The Rank-CVMz was recently reported to have higher
performance than six other multi-label algorithms® and
could be achieved with the software in: http:/
www.computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html.

2.3.4 Six instance-based performance measures. Since the
multi-label classification is more complicated than the single-

RSC Adv., 2016, 6, 4713-4722 | 4715


http://dx.doi.org/10.1039/c5ra20685e

Published on 05 January 2016. Downloaded by UNSW Library on 11/04/2016 16:23:59.

RSC Advances

label one, various evaluation measures have been proposed.® In
this work, six popular and indicative measures were applied to
evaluate the performance of the models: Hamming loss, accu-
racy, precision, recall, F1 and subset accuracy, values of which
are in the range from 0 to 1. In general, an excellent model
should achieve a smaller value for hamming loss, and larger
values for the other five measures. For a contain dataset S =
{X1,Y1)...(X5Y3)...(Xm, Yn)} and the label sets Y = {1,2,...Q}, the
six measures are estimated in terms of the formulas as follows:

g i
m 0

Hamming loss =

Hamming loss estimates the percentage of the labels that are
incorrectly predicted for an instance, the Y? means the pre-
dicted label set of the instance X;, the Y; means the real label set,
and the A stands for the symmetric difference between two label
sets.

Y;Ny?
Accuracy = — Z:YUYP:

Accuracy evaluates the fraction of the correctly predicted
labels out of the union of all predicted and true labels.

.. Y;Ny;?
Prec151on7 Z' |Yp|l |

Precision evaluates the percentage of the correctly predicted
labels out of the predicted labels.

Y;,NY;”
Recall = — Z‘ ) |

Recall evaluates the percentage of the correctly predicted
labels out of the true labels.
m . P
Fl = 1§~ 2rnye|
m = |Yi| + Y7

F1 evaluates the harmonic mean between the precision and
recall.

Subset accuracy = % i‘{]‘ Y, = Y[ﬁ‘}‘

Subset accuracy evaluates the percentage of the label subsets
that are predicted entirely correctly.

3. Results and discussion

In this study, cyclotetramethylene tetranitramine (HMX),
cyclotrimethylene trinitramine (RDX), triamino trinitrobenzene
(TATB) and 2,4,6-trinitrotoluene (TNT) were provided as the
energetic components of the explosives, Fig. 2 shows their
chemical structures and Fig. 3 displays their infrared spectra. As
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Fig. 2 Molecular structures of HMX, RDX, TATB and TNT.

shown, the four explosives have some similar functional groups
like amine group, nitro group and benzene ring, which lead to
the overlapped absorption regions ranging from 400 cm ™' to
1700 cm™ " and near 3000 cm ' in the spectra. Thus, it's
necessary to introduce chemometrics method to assist experi-
ments to simultaneously identify multiple components in the
PBXs.

3.1 The construction of training models

3.1.1 Multi-label model based on data decomposition
strategy (BR-SVM). BR-SVM method identifies each component
from the mixture explosives through building four sub-
classifiers (HMX-classifier, RDX-classifier, TATB-classifier and
TNT-classifier), as illustrated in Fig. 4. Every sub-classifier was
constructed on the basis of all data of the training set and
performed one binary classification with one-vs.-all strategy, in
which the explosives containing the related component were
served as the positive samples (labelled by 1) while the explo-
sives without inclusion of the component were considered as
negative samples (labelled by 0). For example, in the HMX sub-
classifier, if the sample contained HMX component, either for
the single-component explosive or for the multi-component
explosive, it was assigned to the positive sample, or else it was
classified into the negative sample. Finally, combined the labels
derived from the four sub-classifiers, one final label set with
inclusion of the four sub-classifier labels was output for each
sample, revealing what components were contained in the
explosive sample. For example, the label set of 1010 (see Fig. 4)
means that it contains HMX and TATB ingredients in the
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Fig. 3 Infrared spectra of pure HMX, RDX, TATB and TNT explosives.
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Fig. 4 Schematic diagram of BR-SVM model based on the data
decomposition strategy.

sample. Namely, it is one binary-component explosive formed
by HMX and TATB.

PCA analysis. In order to avoid over-fitting and reduce the
calculate complexity, it is of importance to reduce the number
of features. PCA was applied to transform the original variables
into a small number of new variables called principal compo-
nents (PCs) with new coordinates called scores. The projection
of the spectra onto the scores of the three principal compo-
nents, which explain 89.04% information, could provide
a visualization tool to check the inter-relationship between the
different variables. Fig. 5 shows the visual classification based
on the first three principle components for the four binary
classifiers, where the blue dots denote the positive samples
while the red dots denote the negative samples. As can be seen
from Fig. 5, the TATB sub-classifier could differentiate the
explosives containing TATB from the other ones without
inclusion of TATB only based on the three principle compo-
nents. However, the other three sub-classifiers cannot clearly
discriminate the positive samples from the negative ones,
implying that the information from the three principle
components is not enough. In addition, we also evaluated the
ability of the first three components of PCA to describe the FTIR

® positive sample

L. + | negative sample
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X ) 1 G 9 1
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Tt
ok
3
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— = - = - _ _ )
Toe2® v 2 3 ¢ 5 Pl Opgy 2 4 6 5 PC2
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TATB-Classifier
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Fig. 5 Visual classification based on the first three principle compo-
nents for the four binary classifiers. Blue and red points represent
positive and negative samples, respectively.
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spectra by means of a detail check their factor spectra derived
from loadings of the three PCs (see Fig. 6). As reflected by Fig. 6,
the two band regions (viz., 400-1600 cm ™" and 2800-3400 cm )
could characterize the main differences between the three
loading spectra. A detail comparison of the three loadings
shows that with respect to the other two loadings, two signifi-
cant peaks of 3217 em ' and 3318 cm ™' in the first loading,
which are assigned to stretching vibrations of NH, group,
should mainly contribute to the clear discrimination between
the explosives containing TATB and the other negative samples
without TATB in Fig. 5. In the second loading, it is noted that
one 1285 cm ! peak assigned to N-NO, stretching vibration
could characterize HMX and RDX components. The peak at
1356 cm ™' assigned to CH; bend should play a crucial role in
discriminating between TNT and the other components. The
observations indicate that the three principle components
indeed contain important spectral information. However, as
reflected by Fig. 5, the simple classification based on the three
principle components is far away from the clear discrimination
between the different explosive components. Hence, PCA
should be coupled with more advanced classification tool like
SVM in order to perform the task.

SVM model optimization and performance. In order to achieve
a better predictive performance, each binary sub-classifier was
trained by SVM based on all data of the training set and opti-
mized separately. In this work, three important factors were
considered in constructing the SVM-classifier: the number of
PCs, regularization factors c and kernel scale factor g. As known,
too little PCs are not capable to provide sufficient information
for an accurate classification, leading to low predictive perfor-
mance, while too many PCs may increase the complex of the
model, resulting in over fitting. In addition, the smaller values
of ¢ and g, the better generalization and less possible to over-
fitting and over study. Five-fold cross validation and grid search
technique were applied to obtain the optimal parameter set for
the four sub-classifiers. Fig. 7 shows the training performance
at different ¢ and g values varying with the number of PCs.
Taking the impact of the three parameters together, we finally
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Fig. 6 Factor spectra derived from the loadings of the first three
principal components for training dataset.

RSC Aadv., 2016, 6, 4713-4722 | 4717


http://dx.doi.org/10.1039/c5ra20685e

Published on 05 January 2016. Downloaded by UNSW Library on 11/04/2016 16:23:59.

RSC Advances

0.90

0.85

2
2
2
2
2
z

-+ 0.80

22075

S

NN N NRNNNNNNN

2 0.70
HMX Classifier; z RDX Classifier
065 * 065

8910112 0o 1 2 3

4 5 6 7 4 5 6 7 8 9 10 1
the number of PCs the number of PCs.

100} &= 2" 1.00

—8—E—s—BE—E—8—8

NN N NN NNNNN

0

TATB Classifier TNT Classifier

065 065

0 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 11
the number of PCs the number of PCs

Fig.7 The tuning procedure of PCs, c, g for the four binary-classifiers.

determine the optimized parameter set, as listed in Table 1. The
optimized number of PCs are determined to be four, nine, three
and seven for HMX sub-classifier, RDX one, TATB one and TNT
one, which explain 95.69%, 99.37%, 89.04% and 98.79% of the
total variance to the four classifiers, respectively. Thus, the
picked PCs should be sufficient to represent most information
of the spectra data. As expected, the optimized training model
accurately identified every functional component of all samples
in the training set and achieved 100% accuracy in every binary
classifier. As a result, the Hamming loss of the model got the
smallest value 0, and the other five measures (accuracy, F1,
precision, recall and subset accuracy) got the maximum value 1.

3.1.2 Multi-label model based on algorithm adaptation
strategy (Rank-CVMz model). Different from BR-SVM model,
Rank-CVMz method is to use one extended classifier, rather
than the four sub-classifiers, to identify all components in every
sample through one label set with inclusion of the information
of the four components, as illustrated in Fig. 8. In the other
words, the method averagely takes into account the variable
features from the four components to optimize the single
classifier. Also, the three important parameters (PCs, ¢ and g)
involved in SVM algorithm were optimized by means of a simple
lazy-tuning procedure.*” Similarly, the five-fold cross validation
was used in the model construction. Fig. S1 in ESIT displays the
training performance at different parameters. Based on
Fig. S1,T we determined one set of optimized parameters with
PCs of 7, g of 0.5 and c of 4. Using the optimized model, the high

Table 1 The training performance and parameter combination of
each optimal sub-classifier for BR-SVM algorithm

Sub-classifier PCs? Contribution® Acc’

HMX 4 95.69% 100%
RDX 9 99.37% 100%
TATB 3 89.04% 100%
TNT 7 98.79% 100%

“ The number of the picked PCs. ” The sum contribution of the picked
PCs. ¢ The finally accuracy of each sub classifier.
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Fig. 8 Schematic diagram of Rank-CVMz model based on the algo-
rithm adaptation strategy.

performance was achieved, as reflected by subset accuracy of
99.72%, Hamming loss of 0.14%, accuracy of 99.86%, precision
of 99.86%, recall of 100% and F1 of 99.91%, exhibiting nearly
100% accuracy in identifying the components of the explosive
mixtures for the training set.

3.2 Validation of the optimal models by the independent
test set

To validate the predictive performance of the two models, the
optimized BR-SVM model and Rank-CVMz model were used to
predict the components (HMX, RDX, TATB and TNT) of the
mixture samples in the independent test set consisted of 84
spectra from 28 samples with 3 spectra per sample. Same as the
performance of the training set, all the 84 spectra were accu-
rately identified by the two models, exhibiting high prediction
ability without over-fitting problem for simultaneous identifi-
cation on HMX, RDX, TATB and TNT of the mixture samples in
the independent set.

3.3 Application of the optimized models to the real samples

In order to test the applicability of the proposed methods in
practice, the optimized BR-SVM model and Rank-CVMz models
were further used to simultaneously identify HMX, RDX, TATB
and TNT components in the real explosive samples. Five real
explosives were provided, including two single-component
HMX and RDX explosives, two binary-component explosives
(HMX and RDX, HMX and TNT) and one ternary-component
explosive (HMX, RDX and TNT). Their compositions were lis-
ted in Table 2. As shown in Table 2, the five real explosives
contain a bit of additives besides the explosive components. The
predictive results are also summarized in Table 2. Disappoint-
edly, the Rank-CVMz correctly identified only two samples from
the five real explosives. The three explosives PBXN-5, PBX 9407
and octol were wrongly predicted to be the binary-component
explosive composed of HMX and TNT, the ternary-component
explosive containing HMX, RDX and TATB, and the mixture
explosive formed by HMX, RDX and TNT, respectively. But, BR-
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Table 2 Prediction performance of the two optimized models for the real PBX samples
Composition (%) BR-SVM Rank-CVMz

Sample HMX RDX TNT Other Predicted label Explanation Predicted label Explanation
Termix 45 30 20 5-Ammonium nitrate HMX, RDX, TNT Exact match HMX, RDX, TNT Exact match

PBX 9407 0 94 0 6 FPC461 RDX Exact match HMX, RDX, TATB Incomplete match
PBX 48 49 0 1.5 F2314, 1.5 F2311 HMX, RDX Exact match HMX, RDX Exact match
PBXN-5 95 0 0 5-Fluorelastomer HMX Exact match HMX, TNT Incomplete match
Octol 67 0 30 3 F2314 HMX, TNT Exact match HMX, RDX, TNT Incomplete match

SVM still retains 100% accuracy, exhibiting high potential in
practice. One of the important reasons for the high prediction
rate of BR-SVM should be attributed to the fact that it separately
uses the sub-classifier to abstract the pertinent features of each
component rather than considering the whole features of all
components, thus, exhibiting strong ability of anti-disturbance
from the additives in identifying the related component.
Whereas for Rank-CVMz model, only one single-classifier was
constructed through taking the entire features of the four
energetic components into accounts, which may cause to some
extent loss of individual characteristics for each component.
Thus, with respect to BR-SVM model, it may be easier for the
ank-CVMz model to be influenced by the disturbance from the
additives in the real explosives, leading to low identification
accuracy. In addition, as reported, the algorithm adaptation
strategy probably induces some complicated optimization
problems since it simultaneously takes into account all
labels.®*”* Thus, the BR-SVM model exhibits higher application
potential for the real explosive identification.

4. Conclusions

This work combined the first time multi-label pattern recogni-
tion techniques with Fourier transform-infrared spectroscopy
(FT-IR) to simultaneously detect the multiple components in
the mixture explosives. The two main multi-label strategies (viz.,
data decomposition and algorithm adaptation) were used and
compared in order to assess their performance in the multi-
component recognition. The two strategies exhibited excellent
performance with 100% accuracy for the training and inde-
pendent data sets. However, the algorithm adaptation strategy
based on Rank-CVMz model fails to accurately identify the five
real PBX samples with only 40% accuracy, displaying weak anti-
disturbance ability to the additives. But, the data decomposi-
tion strategy represented by the BR-SVM model still achieved
100% accuracy for the five real samples, exhibiting stronger
robustness to eliminate disturbance from the background,
thus, showing high potential for the explosive detection in
practice. However, it should be noted that the data decompo-
sition algorithm to some extent ignores correlation between
multiple labels resulted from its one-against-all strategy that
each label is treated individually. Thus, its performance may be
weakened when there are strong correlations between multiple
components for some mixture systems. In a whole, it is facile yet
efficient for FT-IR spectrophotometry in combination with the

This journal is © The Royal Society of Chemistry 2016

multi-label algorithms to realize the simultaneous identifica-
tion on the multiple components of PBXs in practice. Also, the
strategy proposed by the work provides helpful information for
advancing analysis method in other complicated systems.
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