Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Electronic supplementary information (ESI)

On the Formation of Complex Organic Molecules in the Interstellar Medium: Untangling the Chemical Complexity of Carbon Monoxide-Hydrocarbon Containing Analogue Ices Exposed to Ionizing Radiation via a Combined Infrared and Reflectron Time-Of-Flight Analysis

Matthew J. Abplanalp^{1,2}, Ralf I. Kaiser^{1,2}

¹W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI, 96822, USA; ralfk@hawaii.edu

² Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, 96822, USA

*Correspondence should be addressed to Ralf I. Kaiser: ralfk@hawaii.edu

Table of Contents

 Table S1. Isotopic FTIR assignments before and after irradiation...S5

Figure S1. Infrared spectra before (black) and after (red) irradiation of carbon monoxidemethane (CO–CH₄) ice...S9

Figure S2. Infrared spectra before (black) and after (red) irradiation of carbon monoxide-ethane $(CO-C_2H_6)$ ice...S10

Figure S3. Infrared spectra before (black) and after (red) irradiation of carbon monoxideethylene (CO– C_2H_4) ice...S11

Figure S4. Infrared spectra before (black) and after (red) irradiation of carbon monoxideacetylene (CO $-C_2H_2$) ice...S12

Figure S5. PI-ReTOF-MS ion signal for C_2H_nO (n = 2, 4, 6) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; C¹⁸O- C_2H_6) ices...S13

Figure S6. PI-ReTOF-MS ion signal for C_2H_nO (n = 2, 4, 6) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; C¹⁸O– C_2D_4) ices...S14

Figure S7. PI-ReTOF-MS ion signal for C_2H_nO (n = 2, 4, 6) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; C¹⁸O- C_2D_2) ices...S15

Figure S8. PI-ReTOF-MS ion signal for C_3H_nO (n = 2, 4, 6, 8) versus temperature subliming from carbon monoxide-ethane (CO– C_2H_6 ; C¹⁸O– C_2H_6) ices...S16

Figure S9. PI-ReTOF-MS ion signal for C_3H_nO (n = 2, 4, 6, 8) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; C¹⁸O– C_2D_4) ices...S17

Figure S10. PI-ReTOF-MS ion signal for C_3H_nO (n = 2, 4, 6, 8) versus temperature subliming from carbon monoxide-acetylene (CO-C₂H₂; C¹⁸O-C₂D₂) ices...S18

Figure S11. PI-ReTOF-MS ion signal for C_4H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethane (CO– C_2H_6 ; C¹⁸O– C_2H_6) ices...S19

Figure S12. PI-ReTOF-MS ion signal for C_4H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; C¹⁸O– C_2D_4) ices...S20

Figure S13. PI-ReTOF-MS ion signal for C_4H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-acetylene (CO– C_2H_2 ; C¹⁸O– C_2D_2) ices...S21

Figure S14. PI-ReTOF-MS ion signal for C_5H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethane (CO-C₂H₆; C¹⁸O-C₂H₆) ices...S22

Figure S15. PI-ReTOF-MS ion signal for C_5H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; C¹⁸O– C_2D_4) ices...S23

Figure S16. PI-ReTOF-MS ion signal for C_5H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-acetylene (CO-C₂H₂; C¹⁸O-C₂D₂) ices...S24

Figure S17. PI-ReTOF-MS ion signal for C_6H_nO (n = 4, 6, 8, 10, 12, 14) versus temperature subliming from carbon monoxide-ethane (CO– C_2H_6 ; C¹⁸O– C_2H_6) ices...S25

Figure S18. PI-ReTOF-MS ion signal for C_6H_nO (n = 4, 6, 8, 10, 12, 14) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; C¹⁸O– C_2D_4) ices...S26

Figure S19. PI-ReTOF-MS ion signal for C_6H_nO (n = 4, 6, 8, 10, 12, 14) versus temperature subliming from carbon monoxide-acetylene (CO– C_2H_2 ; C¹⁸O– C_2D_2) ices...S27

Figure S20. PI-ReTOF-MS ion signal for $C_2H_nO_2$ (n = 2, 4) versus temperature subliming from carbon monoxide-ethane (CO– C_2H_6 ; C¹⁸O– C_2H_6) ices...S28

Figure S21. PI-ReTOF-MS ion signal for $C_2H_nO_2$ (n = 2, 4) versus temperature subliming from carbon monoxide-ethylene (CO–C₂H₄; C¹⁸O–C₂D₄) ices...S29

Figure S22. PI-ReTOF-MS ion signal for $C_2H_nO_2$ (n = 2, 4) versus temperature subliming from carbon monoxide-acetylene (CO– C_2H_2 ; C¹⁸O– C_2D_2) ices...S30

Figure S23. PI-ReTOF-MS ion signal for $C_3H_nO_2$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-ethane (CO– C_2H_6 ; C¹⁸O– C_2H_6) ices...S31

Figure S24. PI-ReTOF-MS ion signal for $C_3H_nO_2$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; C¹⁸O– C_2D_4) ices...S32

Figure S25. PI-ReTOF-MS ion signal for $C_3H_nO_2$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-acetylene (CO– C_2H_2 ; C¹⁸O– C_2D_2) ices...S33

Figure S26. PI-ReTOF-MS ion signal for $C_4H_nO_2$ (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethane (CO– C_2H_6 ; C¹⁸O– C_2H_6) ices...S34

Figure S27. PI-ReTOF-MS ion signal for $C_4H_nO_2$ (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; C¹⁸O– C_2D_4) ices...S35

Figure S28. PI-ReTOF-MS ion signal for $C_4H_nO_2$ (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; C¹⁸O- C_2D_2) ices...S36

Figure S29. PI-ReTOF-MS ion signal for $C_5H_nO_2$ (n = 6, 8) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; C¹⁸O- C_2H_6) ices...S37

Figure S30. PI-ReTOF-MS ion signal for $C_5H_nO_2$ (n = 6, 8) versus temperature subliming from carbon monoxide-ethylene (CO-C₂H₄; C¹⁸O-C₂D₄) ices...S38

Figure S31. PI-ReTOF-MS ion signal for $C_5H_nO_2$ (n = 6, 8) versus temperature subliming from carbon monoxide-acetylene (CO-C₂H₂; C¹⁸O-C₂D₂) ices...S39

Figure S32. PI-ReTOF-MS ion signal for $C_6H_nO_2$ (n = 8, 10, 12) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; C¹⁸O- C_2H_6) ices...S40

Figure S33. PI-ReTOF-MS ion signal for $C_6H_nO_2$ (n = 8, 10, 12) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; C¹⁸O– C_2D_4) ices...S41

Figure S34. PI-ReTOF-MS ion signal for $C_6H_nO_2$ (n = 8, 10, 12) versus temperature subliming from carbon monoxide-acetylene (CO-C₂H₂; C¹⁸O-C₂D₂) ices...S42

Figure S35. PI-ReTOF-MS ion signal for $C_4H_nO_3$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-ethane (CO– C_2H_6 ; C¹⁸O– C_2H_6) ices...S43

Figure S36. PI-ReTOF-MS ion signal for $C_4H_nO_3$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; C¹⁸O– C_2D_4) ices...S44

Figure S37. PI-ReTOF-MS ion signal for $C_4H_nO_3$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; C¹⁸O- C_2D_2) ices...S45

Figure S38. PI-ReTOF-MS ion signal for $C_5H_nO_3$ (n = 6, 8) versus temperature subliming from carbon monoxide-ethane (CO–C₂H₆; C¹⁸O–C₂H₆) ices...S46

Figure S39. PI-ReTOF-MS ion signal for $C_5H_nO_3$ (n = 6, 8) versus temperature subliming from carbon monoxide-ethylene (CO–C₂H₄; C¹⁸O–C₂D₄) ices...S47

Figure S40. PI-ReTOF-MS ion signal for $C_5H_nO_3$ (n = 6, 8) versus temperature subliming from carbon monoxide-acetylene (CO– C_2H_2 ; C¹⁸O– C_2D_2) ices...S48

References...S49

		Table S1 Infrared	absorption features	s recorded be	efore and afte	er the irradia	tion of each i	sotopic ice mixture at 5	K	
¹³ CO– ¹³ CD ₄ C ¹⁸ O–C ₂ H ₆			$-C_2H_6$	C ¹⁸ O-	$-C_2D_4$	$C^{18}O-C_2D_2$				
Before Irradiation (cm ⁻¹)	After Irradiation (cm ⁻¹)	Before Irradiation (cm ⁻¹)	After Irradiation (cm ⁻¹)	Before Irradiation (cm ⁻¹)	After Irradiation (cm ⁻¹)	Before Irradiation (cm ⁻¹)	After Irradiation (cm ⁻¹)	Assignment	Carrier	Ref.
						5015		$v_1 + v_3 (C_2 D_2)$	Combinations	1
			4610, 4461, 4441, 4409, 3844, 3378, 3329, 3306, 3186					$\begin{array}{c} v_9 + 2v_6, v_9 + v_2, v_{11} + \\ v_2, v_5 + v_{12}, v_9 + v_3, v_9 \\ + v_6, v_{11} + v_3, v_{11} + v_6 \\ (C_2D_4) \end{array}$	Overtones/ Combinations	2-4
		4400, 4357, 4321, 4272, 4251, 4177, 4161, 4126, 4100, 4070						$\begin{array}{c} v_8 + v_{10}, v_2 + v_7, v_6 + \\ v_{10}, v_1 + v_6, v_2 + v_5, \\ v_7 + v_{12}, v_7 + v_{12}, v_8 + \\ v_{11} + v_{12}, v_8 + v_{11} + \\ v_{12}, v_5 + v_{12} \left(C_2 H_6 \right) \end{array}$	Overtones/ Combinations	5
4154								$2v_1$ (¹³ CO)	Overtone	2, 6
		4147		4147		4154		$2v_1 (C^{18}O)$	Overtone	7, 8
						3294		$v_1 + v_5 (C_2 D_2)$	Combinations	9
		3258						$v_4 + v_7 (C_2 H_6)$	Combination	5
						3231		$v_3 (C_2 H_2)$	CH stretch	1
3216								$v_3 + v_4 (^{13}CD_4)$	Combinations	10-12
3078								$v_1 + v_4 (^{13}CD_4)$	Combinations	10-12
			3105					v ₁₀ (C ₂ H ₅)	CH2 asymmetric stretch	5, 7
			3091					v ₉ (C ₂ H ₄)	CH ₂ asymmetric stretch	4
			3008					v ₃ (CH ₄)	degenerate stretch	13
		2973						$v_{10} (C_2 H_6)$	CH ₃ degenerate stretch	5
		2959						$v_1 (C_2 H_6)$	CH ₃ symmetric stretch	5
		2942						$v_8 + v_{11} (C_2 H_6)$	Combination	5
						2929		$v_3 + v_4 (C_2 D_2)$	Combination	9
		2913						$\nu_8 + \nu_{11} (C_2 H_6)$	Combination	5
		2881						v ₅ (C ₂ H ₆)	CH ₃ symmetric stretch	5
		2852						$v_2 + v_4 + v_{12} (C_2 H_6)$	Combination	5

		2827						$v_6 + v_{11} (C_2 H_6)$	Combination	5
		2739						$v_2 + v_6 (C_2 H_6)$	Combination	5
						2680		$v_1 (C_2 D_2)$	CD stretch	9
		2648						$v_8 + v_{12} (C_2 H_6)$	Combination	5
					2590			$v_3 (C_2 D_2)$	CD stretch	8
							2585	$v_4(C_4D_2)$	CD stretch	14
							2573	$v_4(C_4D_4)$	CD stretch	15
		2558						$v_6 + v_9 (C_2 H_6)$	Combination	5
						2555		v ₃ (C ₂ DH)	CD stretch	9
					2406	2408		$v_3 (C_2 D_2)$	CD stretch	4
		2359						$v_3 + v_6 (C_2 H_6)$	Combination	5
						2341		$v_3 ({}^{13}C_2D_2)$	CD stretch	9
			2338					v ₃ (¹⁸ OCO)	CO asymmetric stretch	7, 8
				2332				v ₉ (C ₂ D ₄)	CD ₂ asymmetric stretch	4
						2325		$v_2 + v_5 (C_2 D_2)$	Combination	9
			2323					v ₃ (CO ₂)	CO asymmetric stretch	7, 8
			2310		2307			v ₃ (C ¹⁸ O ₂)	CO asymmetric stretch	7, 8
	2276							v ₆ (¹³ CO ₂)	CO asymmetric stretch	2, 16
2259								v ₃ (CD ₄)	degenerate stretch	10-12, 17
2237								v ₃ (¹³ CD ₄)	degenerate stretch	10-12, 17
							2232	$v_{10} (C_2 D_6) / v_{11} (C_2 D_4)$	CD ₃ degenerate stretch/ CH ₂ symmetric stretch	4, 5
					2228			$\nu_7 (C_2 D_6)$	CD ₃ degenerate stretch	5
			2227					$v_3 (C_3^{18}O_2)$	CO asymmetric stretch	7, 8
					2219			$v_2 + v_8 (C_2 D_6)$	Combination	5
	2214							$v_{10} ({}^{13}C_2D_6)$	degenerate stretch	18, 19
	2203							$v_2 + v_8 ({}^{13}C_2D_6)$	Combination	20

				2192				$\nu_{11} (C_2 D_4)$	CD ₂ symmetric stretch	4
			2161					$v_1 (C_3^{18}O_2)$	CO stretch	7, 8
	2185							$v_1 ({}^{13}C_2D_6)$	CD ₃ symmetric stretch	5
	2177							$v_{11} ({}^{13}C_2D_4)$	CD ₂ symmetric stretch	21
2137		2136		2137		2139		v ₁ (CO)	CO stretch	6-8
2090								v ₁ (¹³ CO)	CO stretch	6-8
		2089		2084		2088		v_1 (C ¹⁸ O)	CO stretch	6-8
	2073							$\nu_5 (C_2 D_6)$	CD ₃ symmetric stretch	19
2063								$v_2 + v_4 (CD_4)$	Combination	12
	2055							$v_5 ({}^{13}C_2D_6)$	CD ₃ symmetric stretch	19
2038								$v_2 + v_4 ({}^{13}\text{CD}_4)$	Combination	12
	2026							$v_6 + v_9 ({}^{13}C_2D_6)$	Combination	5, 18, 22
1962								$2v_4 ({}^{13}CD_4)$	Overtone	12
-			1811					v ₃ (HC ¹⁸ O)	CO stretch	6-8
-							1800	a	CO stretch	6-8, 23
	1774							v ₃ (D ¹³ CO)	CO stretch	6-8, 23
-					1772		1773	v ₃ (DC ¹⁸ O)	CO stretch	6-816
-					1768			v_2 (DOC ¹⁸ O)	CO stretch	8
	1690– 1660		1740-1600		1680- 1640		1700- 1670	a	CO stretch	23
		1463						v_{11} (C ₂ H ₆)	CH ₃ deformation	5
			1435					$v_{12} (C_2 H_4)$	CH ₂ scissor	4
		1371						v ₆ (C ₂ H ₆)	CH ₃ symmetric deformation	5
			1301					v ₄ (CH ₄)	Degenerate stretch	13
						1085		$v_4 + v_5 (C_2 D_2)$	Combination	9
			1083					v ₂ (HC ¹⁸ O)	CO stretch	6-8, 23
				1073				$v_{12} (C_2 D_4)$	CD ₂ scissor	4
	1067							$v_{12} ({}^{13}C_2D_4)$	CD ₂ symmetric stretch	21
985								$v_4 ({}^{13}CD_4)$	Degenerate stretch	10-12,

							17
		951			$v_7 (C_2 H_4)$	CH ₂ wag	4
	820				$v_{12} (C_2 H_6)$	Bending	5
		758			$v_5(C_2H_2)$	CCH bend	1
			723		$v_7 (C_2 D_4)$	CD ₂ wag	4
				707	$\nu_5 (C_2 D_2)$	CH bend	9
				565	$v_4 (C_2 D_2)$	CD bend	9

^a Carbonyl stretching region (saturated/unsaturated aldehydes/ketones with mono-/di-/tri-/tetra- substituted side chains)

Fig. S1 Infrared spectra before (black) and after (red) irradiation of carbon monoxide-methane (CO–CH₄) ice from (a) 2700-3300 cm⁻¹, (b) 1600-2400 cm⁻¹, and (c) 600-1000 cm⁻¹. Assignments of reactants and products are compiled in Table 2 and * corresponds to carbonyl containing species.

Fig. S2 Infrared spectra before (black) and after (red) irradiation of carbon monoxide-ethane (CO– C_2H_6) ice from (a) 2000-3200 cm⁻¹ and (b) 900-1900 cm⁻¹. Assignments of reactants and products are compiled in Table 2 and * corresponds to carbonyl containing species.

Fig. S3 Infrared spectra before (black) and after (red) irradiation of carbon monoxide-ethylene (CO– C_2H_4) ice from (a) 2800-3400 cm⁻¹ and (b) 700-1900 cm⁻¹. Assignments of reactants and products are compiled in Table 2 and *corresponds to carbonyl containing species.

Fig. S4 Infrared spectra before (black) and after (red) irradiation of carbon monoxide-acetylene $(CO-C_2H_2)$ ice from (a) 2900-3400 cm⁻¹ and (b) 1200-2300 cm⁻¹. Assignments of reactants and products are compiled in Table 2 and *corresponds to carbonyl containing species.

Fig. S5 PI-ReTOF-MS ion signal for C_2H_nO (n = 2, 4, 6) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; $C^{18}O-C_2H_6$) ices

Fig. S6 PI-ReTOF-MS ion signal for C_2H_nO (n = 2, 4, 6) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; $C^{18}O-C_2D_4$) ices.

Fig. S7 PI-ReTOF-MS ion signal for C_2H_nO (n = 2, 4, 6) versus temperature subliming from carbon monoxide-acetylene (CO– C_2H_2 ; $C^{18}O-C_2D_2$) ices.

Fig. S8 PI-ReTOF-MS ion signal for C_3H_nO (n = 2, 4, 6, 8) versus temperature subliming from carbon monoxide-ethane (CO– C_2H_6 ; $C^{18}O-C_2H_6$) ices.

Fig. S9 PI-ReTOF-MS ion signal for C_3H_nO (n = 2, 4, 6, 8) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; C¹⁸O– C_2D_4) ices.

Fig. S10 PI-ReTOF-MS ion signal for C_3H_nO (n = 2, 4, 6, 8) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; $C^{18}O-C_2D_2$) ices.

Fig. S11 PI-ReTOF-MS ion signal for C_4H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; $C^{18}O-C_2H_6$) ices.

Fig. S12 PI-ReTOF-MS ion signal for C_4H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethylene (CO- C_2H_4 ; $C^{18}O-C_2D_4$) ices.

Fig. S13 PI-ReTOF-MS ion signal for C_4H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; $C^{18}O-C_2D_2$) ices.

Fig. S14 PI-ReTOF-MS ion signal for C_5H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; C¹⁸O- C_2H_6) ices.

Fig. S15 PI-ReTOF-MS ion signal for C_5H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethylene (CO- C_2H_4 ; C¹⁸O- C_2D_4) ices.

Fig. S16 PI-ReTOF-MS ion signal for C_5H_nO (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; C¹⁸O- C_2D_2) ices.

Fig. S17 PI-ReTOF-MS ion signal for C_6H_nO (n = 4, 6, 8, 10, 12, 14) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; $C^{18}O-C_2H_6$) ices.

Fig. S18 PI-ReTOF-MS ion signal for C_6H_nO (n = 4, 6, 8, 10, 12, 14) versus temperature subliming from carbon monoxide-ethylene (CO- C_2H_4 ; C¹⁸O- C_2D_4) ices.

Fig. S19 PI-ReTOF-MS ion signal for C_6H_nO (n = 4, 6, 8, 10, 12, 14) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; C¹⁸O- C_2D_2) ices.

Fig. S20 PI-ReTOF-MS ion signal for $C_2H_nO_2$ (n = 2, 4) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; C¹⁸O- C_2H_6) ices.

Fig. S21 PI-ReTOF-MS ion signal for $C_2H_nO_2$ (n = 2, 4) versus temperature subliming from carbon monoxide-ethylene (CO- C_2H_4 ; C¹⁸O- C_2D_4) ices.

Fig. S22 PI-ReTOF-MS ion signal for $C_2H_nO_2$ (n = 2, 4) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; C¹⁸O- C_2D_2) ices.

Fig. S23 PI-ReTOF-MS ion signal for $C_3H_nO_2$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; C¹⁸O- C_2H_6) ices.

Fig. S24 PI-ReTOF-MS ion signal for $C_3H_nO_2$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-ethylene (CO– C_2H_4 ; C¹⁸O– C_2D_4) ices.

Fig. S25 PI-ReTOF-MS ion signal for $C_3H_nO_2$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; $C^{18}O-C_2D_2$) ices.

Fig. S26 PI-ReTOF-MS ion signal for $C_4H_nO_2$ (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; $C^{18}O-C_2H_6$) ices.

Fig. S27 PI-ReTOF-MS ion signal for $C_4H_nO_2$ (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-ethylene (CO- C_2H_4 ; $C^{18}O-C_2D_4$) ices.

Fig. S28 PI-ReTOF-MS ion signal for $C_4H_nO_2$ (n = 4, 6, 8, 10) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; $C^{18}O-C_2D_2$) ices.

Fig. S29 PI-ReTOF-MS ion signal for $C_5H_nO_2$ (n = 6, 8) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; $C^{18}O-C_2H_6$) ices.

Fig. S30 PI-ReTOF-MS ion signal for $C_5H_nO_2$ (n = 6, 8) versus temperature subliming from carbon monoxide-ethylene (CO- C_2H_4 ; $C^{18}O-C_2D_4$) ices.

Fig. S31 PI-ReTOF-MS ion signal for $C_5H_nO_2$ (n = 6, 8) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; $C^{18}O-C_2D_2$) ices.

Fig. S32 PI-ReTOF-MS ion signal for $C_6H_nO_2$ (n = 8, 10, 12) versus temperature subliming from carbon monoxide-ethane (CO– C_2H_6 ; C¹⁸O– C_2H_6) ices.

Fig. S33 PI-ReTOF-MS ion signal for $C_6H_nO_2$ (n = 8, 10, 12) versus temperature subliming from carbon monoxide-ethylene (CO- C_2H_4 ; C¹⁸O- C_2D_4) ices.

Fig. S34 PI-ReTOF-MS ion signal for $C_6H_nO_2$ (n = 8, 10, 12) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; $C^{18}O-C_2D_2$) ices.

Fig. S35 PI-ReTOF-MS ion signal for $C_4H_nO_3$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; C¹⁸O- C_2H_6) ices.

Fig. S36 PI-ReTOF-MS ion signal for $C_4H_nO_3$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-ethylene (CO- C_2H_4 ; C¹⁸O- C_2D_4) ices.

Fig. S37 PI-ReTOF-MS ion signal for $C_4H_nO_3$ (n = 4, 6, 8) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; $C^{18}O-C_2D_2$) ices.

Fig. S38 PI-ReTOF-MS ion signal for $C_5H_nO_3$ (n = 6, 8) versus temperature subliming from carbon monoxide-ethane (CO- C_2H_6 ; C¹⁸O- C_2H_6) ices.

Fig. S39 PI-ReTOF-MS ion signal for $C_5H_nO_3$ (n = 6, 8) versus temperature subliming from carbon monoxide-ethylene (CO- C_2H_4 ; C¹⁸O- C_2D_4) ices.

Fig. S40 PI-ReTOF-MS ion signal for $C_5H_nO_3$ (n = 6, 8) versus temperature subliming from carbon monoxide-acetylene (CO- C_2H_2 ; C¹⁸O- C_2D_2) ices.

References and Notes

- 1. R. L. Hudson, R. F. Ferrante and M. H. Moore, *Icarus*, 2014, 228, 276-287.
- 2. C. S. Jamieson, A. M. Mebel and R. I. Kaiser, *Astrophys. J., Sup.*, 2006, 163, 184-206.
- 3. W. Gallaway and E. Barker, J. Chem. Phys., 1942, 10, 88-97.
- 4. M. J. Abplanalp and R. I. Kaiser, *Astrophys. J.*, 2017, **836**, 195-226.
- 5. M. J. Abplanalp and R. I. Kaiser, *Astrophys. J.*, 2016, **827**, 132-161.
- 6. M. J. Abplanalp, S. Góbi, A. Bergantini, A. M. Turner and R. I. Kaiser, *ChemPhysChem*, 2018, **19**, 556-560.
- 7. M. J. Abplanalp, S. Gozem, A. I. Krylov, C. N. Shingledecker, E. Herbst and R. I. Kaiser, *Proc. Natl. Acad. Sci. U. S. A.*, 2016, **113**, 7727-7732.
- 8. M. J. Abplanalp, A. Borsuk, B. M. Jones and R. I. Kaiser, *Astrophys. J.*, 2015, **814**, 45-61.
- 9. G. L. Bottger and D. F. E. Jr., J. Chem. Phys., 1964, 40, 2010-2017.
- 10. C. J. Bennett, C. S. Jamieson, Y. Osumura and R. I. Kaiser, *Astrophys. J.*, 2006, 653, 792-811.
- 11. J. He, K. Gao, G. Vidali, C. J. Bennett and R. I. Kaiser, Astrophys. J., 2010, 721, 1656.
- 12. P. Calvani, S. Lupi and P. Maselli, J. Chem. Phys., 1989, 91, 6737-6742.
- 13. M. J. Abplanalp, B. M. Jones and R. I. Kaiser, *Phys. Chem. Chem. Phys.*, 2018, **20**, 5435-5468.
- 14. Y.-J. Wu and B.-M. Cheng, Chem. Phys. Lett., 2008, 461, 53-57.
- 15. E. Tørneng, C. J. Nielsen, P. Klaeboe, H. Hopf and H. Priebe, *Spectrochim. Acta A*, 1980, **36**, 975-987.
- 16. P. A. Gerakines, W. A. Schutte, J. M. Greenberg and E. F. van Dishoeck, *Astron. Astrophys.*, 1995, **296**, 810-818.
- 17. R. I. Kaiser and K. Roessler, *Astrophys. J.*, 1998, **503**, 959-975.
- 18. I. M. Nyquist, I. M. Mills, W. B. Person and B. Crawford, *J. Chem. Phys.*, 1957, **26**, 552-558.
- M. G. Wisnosky, D. F. Eggers, L. R. Fredrickson and J. C. Decius, *J. Chem. Phys.*, 1983, 79, 3513-3516.
- 20. S. B. Tejada and D. F. Eggers, Spectrochim Acta A, 1976, 32, 1557-1562.
- 21. M. E. Jacox, J. Chem. Phys., 1962, 36, 140-143.
- 22. S. Kondo and S. Saëki, Spectrochim. Acta A, 1973, 29, 735-751.
- 23. R. I. Kaiser, S. Maity and B. M. Jones, Phys. Chem. Chem. Phys., 2014, 16, 3399-3424.