

Supporting Information

Formation of Glyoxylic Acid in Interstellar Ices: A Key Entry Point for Prebiotic Chemistry

André K. Eckhardt⁺, Alexandre Bergantini⁺, Santosh K. Singh, Peter R. Schreiner,* and Ralf I. Kaiser*

anie_201901059_sm_miscellaneous_information.pdf

Methods

Materials and Experimental Setup.

The experimental setup has been described in detail elsewhere.^[1] Briefly, the simulation experiments were conducted in a contamination-free ultra-high vacuum (UHV) chamber at base pressures of a few 10^{-11} Torr.^[2] Four sets of ices were prepared on a 5 ± 1 K target through deposition of the gaseous mixtures H₂O:CO, H₂O:¹³CO, D₂O:CO, D₂O:¹³CO at partial pressures of 8.0 ± 0.1 Torr of water and 4.0 ± 0.1 Torr of carbon monoxide, respectively. Note that the partial pressures of H₂O and CO in the gas mixing chamber were determined via calibration experiments using FTIR spectroscopy in order to achieve the final H₂O:CO ratio of 1:2. The fact that the glass capillary array retains the water molecules more effectively than the CO molecules justifies the H₂O:CO partial pressures. The ice thickness was determined to be $1000 \pm 50 \ \mu m$ based on laser interferometry collected online during deposition.^[1a] Infrared spectroscopy of the 1648 cm⁻¹ (v_2 , O-H bend) and 2138 cm⁻¹ (v_1 , C-O stretch) bands of water^[3] and carbon monoxide,^[4] respectively, determined a water to carbon monoxide ratio of (1.0:2.0) \pm 0.5. The ices were irradiated with energetic electrons (5 keV) for 2 hours at 50 \pm 5 nA by scanning the electron beam over an area of 1.0 ± 0.1 cm². According to CASINO (version 2.42) Monte Carlo^[5] simulations, the samples were exposed to an average dose of 5.7 ± 0.5 eV per molecule, which is equivalent to $(5 \pm 2) \times 10^7$ years of exposition to cosmic rays inside a typical molecular cloud.^[6] The choice of low temperature target represents typical temperatures of icecoated grains in cold molecular clouds; the pressure conditions of a few 10⁻¹¹ Torr guarantee that over the time scale of each experiment of around 12 h, less than one monolayer of residual gases condensed on the icy target. For the in situ identification of new bands emerging, a Fourier Transform Infrared (FTIR) spectrometer (Nicolet 6700) monitored the samples during the irradiation. After the irradiation, temperature programed desorption (TPD) studies were conducted by heating the irradiated ices at a rate of 1.0 K min⁻¹ to 300 K. Throughout the sublimation process, individual molecules subliming into the gas-phase were identified by ionizing the molecules via single photoionization (PI) reflectance time-of-flight massspectrometry (PI-ReTOF-MS). The photoionization source exploited pulsed (30 Hz) coherent vacuum ultraviolet (VUV) light in two different sets of experiments: one set at 114.6 nm (10.82 eV) and the other at 121.2 nm (10.23 eV). The VUV light was generated via resonant four wave mixing $(2\omega_1 - \omega_2)$.^[7] By systematically analyzing data from crossed isotopic experiments with D₂O and ¹³CO, and by tuning the photoionization energy from 10.82 eV to 10.23 eV, we selectively ionized specific structural isomers based on their computed adiabatic ionization energies (IE), which enabled us to determine which isomers were produced. We would also like to discuss the source of ionizing radiation (energetic electrons). The experiments aimed at simulating the interaction of interstellar model ices with galactic cosmic rays (GCRs) to form

astrobiologically important molecules. It is very important to highlight that no laboratory experiment can simulate the interaction of the energetic GCRs with ices directly since no experimental device is accessible to the community that can generate a broad range of kinetic energies of protons and helium nuclei – the main constituents of the GCR - from the MeV to the PeV range. However, the physical effects of GCRs interacting with ices are well understood: GCR lose energy predominantly via ionization of the target molecules; the secondary electrons generated can induce further ionization thus creating electron cascades.^[8] By convolving over the energies of the GCR particles, it is feasible to derive a kinetic energy distribution of the secondary electrons generated that are typically in ranges of a few eV up to the 10 keV. Therefore, rather than exposing the samples to GCR particles, we simulate the GCR processing and irradiate the samples with electrons, here at 5 keV. Their linear energy transfer (LET) is similar to LETs of 10 to 20 MeV GCR protons penetrating ices. Our ice mixtures are chosen as predominantly polar model ices, so that we could demonstrate the proof of concept that $C_2H_2O_3$ isomers can form from these mixtures upon interaction with ionizing radiation.

Computations. All computations were carried out with Gaussian 16, Revision A.03. For all geometry optimizations and frequency computations Second-order Møller–Plesset perturbation theory (MP2)^[9] was employed utilizing the Dunning correlation consistent split valence basis set cc-pVTZ.^[10] Based on these geometries the corresponding frozen-core coupled cluster^[11] CCSD(T)/cc-pVDZ, CCSD(T)/cc-pVTZ and CCSD(T)/cc-pVQZ single point energies were computed and extrapolated to complete basis set limits,^[12] CCSD(T)/CBS with MP2/cc-pVTZ zero-point vibrational energy corrections. In general, the adiabatic ionization energies were computed by taking the ZPVE corrected energy difference between the neutral and ionic species that correspond to similar conformations.

Figure S1: Recorded IR spectra of a water (H_2O) and carbon monoxide (CO) ice before (black) and after (red) 2 h electron irradiation.

Figure S2: Recorded IR spectra of a water (H₂O) and carbon monoxide (CO) ice before (black) and after (red) 2 h electron irradiation.

Figure S3: Recorded IR spectra of a deuterated water (D_2O) and carbon monoxide (CO) ice before (black) and after (red) 2 h electron irradiation.

Figure S4: Recorded IR spectra of a deuterated water (D_2O) and carbon monoxide (CO) ice before (black) and after (red) 2 h electron irradiation.

Figure S5: Recorded IR spectra of a water (H_2O) and ${}^{13}C$ -carbon monoxide (${}^{13}CO$) ice before (black) and after (red) 2 h electron irradiation.

Figure S6: Recorded IR spectra of a water (H₂O) and 13 C-carbon monoxide (13 CO) ice before (black) and after (red) 2 h electron irradiation.

Figure S7: Recorded IR spectra of a deuterated water (D_2O) and ¹³C-carbon monoxide (¹³CO) ice before (black) and after (red) 2 h electron irradiation.

Figure S8: Recorded IR spectra of a deuterated water (D_2O) and ¹³C-carbon monoxide (¹³CO) ice before (black) and after (red) 2 h electron irradiation.

Figure S9: The absence of the signals from $C_4D_{10}O$ (a) and ${}^{13}C_4D_{10}O$ (b) isotopologues, as measured from the D₂O:CO and D₂O: ${}^{13}CO$ experiments, respectively, reveals that $C_4H_{10}O$ isomers were not formed in the H₂O:CO experiments; (c) Absence of signal from m/z 80 collected at 10.23 eV in the H₂O: ${}^{13}CO$ experiment reveals that ${}^{13}C_6H_2$, ${}^{13}CH_3O_4$, ${}^{13}C_2H_6O_3$, and/or O₅ were not detected in our study.

Figure S10: Potential signals from isotopologues of $C_3H_6O_2$ as measured in isotopically-labeled experiments at 10.82 eV (a, b, c) and at 10.23 eV (d, e, f).

$\widetilde{v}_{ m exp.}$ / cm ⁻¹	$ ilde{ u}_{ m Lit.}$ / cm ⁻¹	Assignment
~2345	2346 ^[13]	$v_3 \operatorname{CO}_2$
~2327	2330 ^[13]	$v_3 \operatorname{OC}^{18} \operatorname{O}$
~2278	2281 ^[13]	v_3 ¹³ CO ₂
~1852	1853 ^[14]	v_3 HCO
~1839	1833 ^[15]	v ₂ trans-HOCO
~1785	1797 ^[15]	v ₂ cis-HOCO
~1718	1726 ^[16]	v_2 H ₂ CO
~1700	1767 ^[17]	v ₃ HCOOH
~1499	1496 ^[16]	$v_3 H_2 CO$
~1274	1273 ^[13]	$2 v_2 CO_2$
~1250	1245 ^[16]	v5 H2CO
~1224	1216 ^[17]	v_6 HCOOH
~1175	$1171^{[16]}$	$v_6 H_2 CO$
~1095	$1092^{[14]}$	v_2 HCO
~1023	1031 ^[14]	v ₈ CH ₃ OH
~661	660 ^[13]	$v_2 \operatorname{CO}_2$

Table S1: Identified IR signals and assignments of new products after irradiating a H₂O:CO ice.

Table S2: Identified IR signals and assignments of new products after irradiating a D₂O:CO ice.

$ ilde{ u}_{ m exp.}$ / cm ⁻¹	$ ilde{ u}_{ m Lit.}$ / cm ⁻¹	Assignment
~2346	2346 ^[13]	$v_3 \operatorname{CO}_2$
~2328	2330 ^[13]	$v_3 \text{ OC}^{18} \text{O}$
~2280	2281 ^[13]	$v_3 {}^{13}\mathrm{CO}_2$
~1789	1825 ^[15]	v ₂ trans-DOCO
~1773	1798 ^[15]	v_2 cis-DOCO
~1735	1726 ^[15]	v ₃ DCOOD
~1695	1695 ^[15, 18]	$v_2 D_2 CO$
~1102	1103 ^[18]	$v_3 D_2 CO$
~1072	1067 ^[19]	$v_6 \text{ CD}_3 \text{OD}$
~997	989 ^[18]	$v_5 D_2 CO$
~852	853 ^[15]	$v_2 \mathrm{DCO}$
~662	660 ^[13]	$v_2 \operatorname{CO}_2$

$\widetilde{v}_{\mathrm{exp.}}$ / cm ⁻¹	$ ilde{ u}_{ m Lit.}$ / cm ⁻¹	Assignment
~2346	2346 ^[13]	$v_3 \operatorname{CO}_2$
~2280	2281 ^[13]	$v_3 {}^{13}\mathrm{CO}_2$
~2328	2330 ^[13]	$v_3 \operatorname{OC}^{18} \operatorname{O}$
~1810	1821 ^[18]	$v_3 H^{13}CO$
~1800	1792 ^[15]	v_2 trans-HO ¹³ CO
~1725	1756 ^[15]	$v_2 cis$ -HO ¹³ CO
~1693	1723 ^[18]	v ₃ H ¹³ COOH
~1660	1702 ^[18]	$v_2 \operatorname{H_2^{13}CO}$
~1498	1505 ^[18]	$v_3 H_2^{13}CO$
~1204	1242 ^[18]	$v_5 \operatorname{H_2^{13}CO}$
~1190	1170 ^[18]	$v_6 \operatorname{H_2^{13}CO}$
~1095	$1084^{[18]}$	$v_2 H^{13}CO$
~1087	1091 ^[18]	$v_6 H^{13}COOH$
~1000	1010 ^[20]	<i>v</i> ⁸ ¹³ CH ₃ OH
~638	639 ^[21]	$v_2 {}^{13}\mathrm{CO}_2$

Table S3: Identified IR signals and assignments of new products after irradiating a H₂O:¹³CO ice.

Table S4: Identified IR signals and assignments of new products after irradiating a D₂O:¹³CO ice.

$\tilde{v}_{ m exp.}$ / cm ⁻¹	$\widetilde{v}_{ m Lit.}$ / cm $^{-1}$	$\Delta ilde{v}_{ m exp.}$ / cm $^{-1}$	$\Delta ilde{v}_{ m heor}$ / cm ⁻¹ *	Assignment
~2280	2281 ^[13]			<i>v</i> ₃ ¹³ CO ₂
~1770	-	69	51	v_2 trans-DO ¹³ CO
~1765	-	87	92	$v_3 D^{13}CO$
~1640	-	60	74	$v_3 D^{13}COOD$
~1640	-	78	79	$v_2 D_2^{13} CO$
~1080	-	-	1162 (145)**	$v_6 D^{13} COOD$
~1000	-	-	1094 (216)**	v ₃ trans-DO ¹³ CO
~990	-	509	418	$v_3 D_2^{13} CO$
~980	-	-	984 (39)**	<i>v</i> ₄ ¹³ CD ₃ OD
~970	-	280	276	$v_5 D_2^{13} CO$
~850	-	325	253	$v_2 D^{13}CO$
~638	639 ^[21]			$v_2 {}^{13}\mathrm{CO}_2$

* The theoretical harmonic isotope shifts were computed at B3LYP/cc-pVTZ level of theory. ** Absolute computed harmonic frequency (intensity in km mol⁻¹).

74

 C_6H_2

Formula		Exp	eriment	
ronnuna	H ₂ O:CO	D ₂ O :CO	H ₂ O: ¹³ CO	D ₂ O: ¹³ CO
$C_2H_2O_3$	74	76	76	78
$C_3H_6O_2$	74	80	77	83
$C_4H_{10}O$	74	84	78	88

76

80

82

Table S5: Mass-shifts of the potential species detected at m/z = 74 in the water-carbon monoxide experiment upon isotopic substitution.

Column densities for CO and CO₂ were calculated according to one of our previous studies.^[22]

Figure S11: Change of the column density for CO and CO₂ over the irradiation time.

	IR_Pook /	4 / cm	Area _{Int.}	/ cm ⁻²	N/ molec	cules cm ⁻²
	cm ⁻¹	molecule ⁻¹	before irrad.	after irrad.	before irrad.	after irrad.
СО	2138	$1.12 \cdot 10^{-17[23]}$	16.32	15.25	$1.19 \cdot 10^{-18}$	$1.11 \cdot 10^{-18}$
CO ₂	2343	$7.60 \cdot 10^{-17[23]}$	0.00	3.54	0	$3.79 \cdot 10^{-16}$

Table S6: Calculated column densities for CO and CO2 before and after irradiation.

Based on these calculations the total CO conversion is 6.5%. Nearly every second CO molecule (48.9%) is transformed to CO₂.

Cartesian Coordinates for Selected Structures

MP2/cc-pVTZ optimized geometry (distances in Å), electronic energies (in hartree), zero-point vibrational energies (ZPVE), extrapolated CCSD(T)/CBS energies (in hartree) and adiabatic ionization energies (IE) at CCSD(T)/CBS//MP2/cc-pVTZ level of theory.

(E,E) glyoxylic acid (C_s)

С	-0.859006	-0.555222	0.000000
С	0.586807	-0.073210	0.000000
0	1.517032	-0.839497	0.000000
0	0.693086	1.258278	0.000000
Η	-0.220165	1.597248	0.000000
0	-1.779488	0.237616	0.000000
Η	-0.992400	-1.643363	0.000000

$$\begin{split} E[HF] &= -301.5964898\\ E[MP2] &= -302.6028233\\ E[CCSD(T)/cc-pVDZ] &= -302.3521374\\ E[CCSD(T)/cc-pVTZ] &= -302.6511254\\ E[CCSD(T)/cc-pVQZ] &= -302.7444269\\ E[CCSD(T)/CBS] &= -302.7867494\\ ZPVE &= 27.4547 \ kcal \ mol^{-1} \end{split}$$

(E,E) glyoxylic acid cation (C_s)

С	-1.044516	-0.627091	0.000000
С	0.746497	0.022319	0.000000
0	1.471952	-0.881670	0.000000
0	0.750281	1.302387	0.000000
Н	-0.132607	1.716836	0.000000
0	-1.879603	0.174832	0.000000
Н	-0.966137	-1.725761	0.000000

$$\begin{split} E[HF] &= -301.2312687 \\ E[MP2] &= -302.2173965 \\ E[CCSD(T)/cc-pVDZ] &= -301.9799916 \\ E[CCSD(T)/cc-pVTZ] &= -302.2661924 \\ E[CCSD(T)/cc-pVQZ] &= -302.3552142 \\ E[CCSD(T)/CBS] &= -302.3954055 \\ ZPVE &= 27.1143 \ kcal \ mol^{-1} \end{split}$$

Adiabatic IE: 10.63 eV

(E,Z) glyoxylic acid (C_s)

С	-0.728148	-0.756602	0.000000
С	0.003256	0.578617	0.000000
0	-0.598519	1.628358	0.000000
0	1.333938	0.442732	0.000000
Η	1.694167	1.342655	0.000000
0	-0.173304	-1.829603	0.000000
Η	-1.820701	-0.632588	0.000000

$$\begin{split} E[HF] &= -301.5961413\\ E[MP2] &= -302.6005130\\ E[CCSD(T)/cc-pVDZ] &= -302.3506021\\ E[CCSD(T)/cc-pVTZ] &= -302.6488887\\ E[CCSD(T)/cc-pVQZ] &= -302.7420272\\ E[CCSD(T)/CBS] &= -302.7843127\\ ZPVE &= 27.1818 \ kcal \ mol^{-1} \end{split}$$

(E,Z) glyoxylic acid cation (C_s)

-0.656096	-1.042367	0.000000
-0.027365	0.776692	0.000000
-0.916818	1.550392	0.000000
1.245634	0.670545	0.000000
1.687229	1.547160	0.000000
0.192383	-1.801416	0.000000
-1.748664	-0.957845	0.000000
	$\begin{array}{r} -0.656096\\ -0.027365\\ -0.916818\\ 1.245634\\ 1.687229\\ 0.192383\\ -1.748664\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

$$\begin{split} E[HF] &= -301.2348124 \\ E[MP2] &= -302.2178562 \\ E[CCSD(T)/cc-pVDZ] &= -301.9819678 \\ E[CCSD(T)/cc-pVTZ] &= -302.2674128 \\ E[CCSD(T)/cc-pVQZ] &= -302.3562207 \\ E[CCSD(T)/CBS] &= -302.3963293 \\ ZPVE &= 26.5854 \text{ kcal mol}^{-1} \end{split}$$

Adiabatic IE: 10.53 eV

(Z,Z) glyoxylic acid (C_s)

С	-0.742664	-0.790187	0.000000
С	0.036221	0.525191	0.000000
0	1.235373	0.620192	0.000000
0	-0.831474	1.559258	0.000000
Η	-0.295588	2.366836	0.000000
0	-0.175113	-1.856142	0.000000
Η	-1.837368	-0.690013	0.000000

$$\begin{split} E[HF] &= -301.5933634 \\ E[MP2] &= -302.5987173 \\ E[CCSD(T)/cc-pVDZ] &= -302.3487107 \\ E[CCSD(T)/cc-pVTZ] &= -302.6469385 \\ E[CCSD(T)/cc-pVQZ] &= -302.7400880 \\ E[CCSD(T)/CBS] &= -302.7823978 \\ ZPVE &= 27.0773 \ kcal \ mol^{-1} \end{split}$$

(Z,Z) glyoxylic acid cation (C_s)

-0.718530	-1.037433	0.000000
-0.009850	0.697710	0.000000
-0.843972	1.531869	0.000000
1.264706	0.534145	0.000000
1.750044	1.386643	0.000000
-1.849974	-1.176996	0.000000
0.213911	-1.625006	0.000000
	$\begin{array}{c} -0.718530\\ -0.009850\\ -0.843972\\ 1.264706\\ 1.750044\\ -1.849974\\ 0.213911\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

$$\begin{split} E[HF] &= -301.2296387 \\ E[MP2] &= -302.2175597 \\ E[CCSD(T)/cc-pVDZ] &= -301.9804133 \\ E[CCSD(T)/cc-pVTZ] &= -302.2655284 \\ E[CCSD(T)/cc-pVQZ] &= -302.3542000 \\ E[CCSD(T)/CBS] &= -302.3942250 \\ ZPVE &= 30.8872 \ kcal \ mol^{-1} \end{split}$$

Adiabatic IE: 10.73 eV

formic anhydride $11 (C_s)$

0.081641	2.332282	0.000000
0.028409	0.960617	0.000000
-0.855299	3.079812	0.000000
1.132286	2.629039	0.000000
-1.231023	0.371276	0.000000
-1.338102	-0.816632	0.000000
-2.038627	1.102854	0.000000
	$\begin{array}{r} 0.081641\\ 0.028409\\ -0.855299\\ 1.132286\\ -1.231023\\ -1.338102\\ -2.038627\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

E[HF] = -301.6030359 E[MP2] = -302.6049819 E[CCSD(T)/cc-pVDZ] = -302.3544709 E[CCSD(T)/cc-pVTZ] = -302.6533150 E[CCSD(T)/cc-pVQZ] = -302.7458979 E[CCSD(T)/CBS] = -302.7874549 $ZPVE = 27.0089 \text{ kcal mol}^{-1}$

formic anhydride cation (C_s)

-1.450264	0.295482	0.000000
0.106762	0.749381	0.000000
-1.711343	-0.831246	0.000000
-1.958362	1.255017	0.000000
0.921358	-0.208802	0.000000
2.170523	-0.018932	0.000000
0.623309	-1.266946	0.000000
	$\begin{array}{r} -1.450264\\ 0.106762\\ -1.711343\\ -1.958362\\ 0.921358\\ 2.170523\\ 0.623309\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

$$\begin{split} E[HF] &= -301.2515921 \\ E[MP2] &= -302.1906032 \\ E[CCSD(T)/cc-pVDZ] &= -301.9674119 \\ E[CCSD(T)/cc-pVTZ] &= -302.2506445 \\ E[CCSD(T)/cc-pVQZ] &= -302.3377107 \\ E[CCSD(T)/CBS] &= -302.3763540 \\ ZPVE &= 25.6503 \text{ kcal mol}^{-1} \end{split}$$

Adiabatic IE: 11.43 eV

formic anhydride 11' (C_1)

С	1.199963	0.317967	0.066444
Ο	0.000000	1.006817	0.000000
0	1.385720	-0.814291	-0.258139
Η	1.956984	1.018709	0.426596
С	-1.199963	0.317966	-0.066444
0	-1.385719	-0.814292	0.258139
Η	-1.956985	1.018708	-0.426596

HF = -301.5972704MP2 = -302.6007522 E[CCSD(T)/cc-pVDZ] = -302.3505691 E[CCSD(T)/cc-pVTZ] = -302.6486706 E[CCSD(T)/cc-pVQZ] = -302.7412534 E[CCSD(T)/CBS] = -302.7829604 ZPVE = 26.8608 kcal mol⁻¹

formic anhydride cation 1 (C_{2v})

С	-1.111945	0.000000	0.339411
0	0.000000	0.000000	1.113650
0	-1.042052	0.000000	-0.868438
Η	-2.045651	0.000000	0.904216
С	1.111944	0.000000	0.339411
0	1.042052	0.000000	-0.868438
Η	2.045651	0.000000	0.904216

HF = -301.2325749 MP2 = -302.2057720 E[CCSD(T)/cc-pVDZ] = -301.9793279 E[CCSD(T)/cc-pVTZ] = -302.2648551 E[CCSD(T)/cc-pVQZ] = -302.3529757 E[CCSD(T)/CBS] = -302.3923120 $ZPVE = 32.5685 \text{ kcal mol}^{-1}$

Adiabatic IE: 10.88 eV

formic anhydride 11" (C_{2v})

С	0.033157	2.346639	0.000000
0	0.026148	0.970361	0.000000
0	1.050201	2.969061	0.000000
Η	-0.973011	2.782164	0.000000
С	-1.206858	0.358897	0.000000
0	-1.318671	-0.828236	0.000000
Η	-2.040445	1.071069	0.000000

$$\begin{split} E[HF] &= -301.5961684 \\ E[MP2] &= -302.6004857 \\ E[CCSD(T)/cc-pVDZ] &= -302.3487333 \\ E[CCSD(T)/cc-pVTZ] &= -302.6483839 \\ E[CCSD(T)/cc-pVQZ] &= -302.7409569 \\ E[CCSD(T)/CBS] &= -302.7823412 \\ ZPVE &= 26.9175 \ kcal \ mol^{-1} \end{split}$$

formic anhydride cation 3 (C_{2v})

С	0.000000	-1.155376	-0.337306
0	0.000000	0.000000	0.392471
0	0.000000	-2.179915	0.267949
Н	0.000000	-1.067891	-1.435164
С	0.000000	1.155376	-0.337306
0	0.000000	2.179915	0.267949
Η	0.000000	1.067891	-1.435164

$$\begin{split} E[HF] &= -301.1783402 \\ E[MP2] &= -302.1758232 \\ E[CCSD(T)/cc-pVDZ] &= -301.9446795 \\ E[CCSD(T)/cc-pVTZ] &= -302.2298821 \\ E[CCSD(T)/cc-pVQZ] &= -302.3172733 \\ E[CCSD(T)/CBS] &= -302.3558819 \\ ZPVE &= 27.2307 \ kcal \ mol^{-1} \end{split}$$

Adiabatic IE: 11.62 eV

References and Full Gaussian 16 Citation

Gaussian 16:

Gaussian 16, Revision A.03; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., Gaussian Inc., Wallingford CT **2016**.

- a) A. Bergantini, S. Góbi, M. J. Abplanalp, R. I. Kaiser, *Astrophys. J.* 2018, 852, 70; b) S. Góbi, A. Bergantini, A. M. Turner, R. I. Kaiser, *J. Phys. Chem. A* 2017, *121*, 3879-3890.
- [2] R. I. Kaiser, S. Maity, B. M. Jones, *Phys. Chem. Chem. Phys.* **2014**, *16*, 3399-3424.
- [3] A. Bergantini, B. G. Nair, N. J. Mason, H. J. Fraser, A&A 2014, 570, A120.
- [4] R. I. Kaiser, S. Maity, B. M. Jones, *PCCP* **2014**, *16*, 3399-3424.
- [5] D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, *Scanning* **2007**, *29*, 92-101.
- [6] A. Yeghikyan, *Ap* **2011**, *54*, 87-99.
- [7] B. M. Jones, R. I. Kaiser, J. Phys. Chem. Lett. 2013, 4, 1965-1971.
- [8] a) R. I. Kaiser, G. Eich, A. Gabrysch, K. Roessler, *Astrophys. J.* 1997, 484, 487-498; b) R. I. Kaiser, A. Gabrysch, K. Roessler, *Rev. Sci. Instrum.* 1995, 66, 3058-3066.
- [9] C. Møller, M. S. Plesset, *Phys. Rev.* **1934**, *46*, 618-622.
- [10] J. Dunning, Thom H., J. Chem. Phys. 1989, 90, 1007-1023.
- [11] a) J. Čížek, J. Chem. Phys. 1966, 45, 4256-4266; b) R. J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga, Chem. Phys. Lett. 1990, 165, 513-522; c) K. Raghavachari, Annu. Rev. Phys. Chem. 1991, 42, 615-642; d) J. F. Stanton, Chem. Phys. Lett. 1997, 281, 130-134.
- [12] K. A. Peterson, D. E. Woon, T. H. Dunning, J. Chem. Phys. 1994, 100, 7410-7415.
- [13] C. S. Jamieson, A. M. Mebel, R. I. Kaiser, Astrophys. J. S. 2006, 163, 184-206.
- [14] C. J. Bennett, R. I. Kaiser, Astrophys. J. 2007, 660, 1289-1295.
- [15] D. E. Milligan, M. E. Jacox, J. Chem. Phys. 1971, 54, 927-942.
- [16] C. J. Bennett, S.-H. Chen, B.-J. Sun, A. H. H. Chang, R. I. Kaiser, Astrophys. J. 2007, 660, 1588-1608.
- [17] M. Pettersson, J. Lundell, L. Khriachtchev, M. Räsänen, J. Am. Chem. Soc. 1997, 119, 11715-11716.
- [18] T. L. Tso, E. K. C. Lee, J. Phys. Chem. 1984, 88, 5475-5482.
- [19] H. Hidaka, A. Kouchi, N. Watanabe, J. Chem. Phys. 2007, 126, 204707.
- [20] S. Maity, R. I. Kaiser, B. M. Jones, Faraday Discuss. 2014, 168, 485-516.
- [21] C. J. Bennett, C. S. Jamieson, R. I. Kaiser, *Phys. Chem. Chem. Phys.* 2010, *12*, 4032-4050.
- [22] A. M. Turner, M. J. Abplanalp, S. Y. Chen, Y. T. Chen, A. H. H. Chang, R. I. Kaiser, *Phys. Chem. Chem. Phys.* **2015**, *17*, 27281-27291.
- [23] A. Jolly, H. Cottin, M. Bouilloud, M.-C. Gazeau, N. Fray, Y. Bénilan, Mon. Not. R. Astron. Soc. 2015, 451, 2145-2160.