Supporting Information

for

Spectroscopic Study on the Polymer Condensates Formed via Pyrolysis of Levitated Droplets of Dicyanamide-Containing Ionic Liquids

Stephen J. Brotton¹ and Ralf I. Kaiser*¹

¹ Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822

Table SI. Wavenumbers and possible vibrational mode assignments for the peaks in the nearinfrared absorption spectrum from 5500 cm⁻¹ to 8000 cm⁻¹ produced by an [MAT][DCA] droplet levitated in argon. The letters a) to k) refer to the peak labels in Figure 10. The vibrational mode assignments and peak wavenumbers corresponding to $v_1 - v_{50}$ and $v_1^* - v_9^*$ are presented in Ref. [28].

Dook	Deal	Vibrational	Dradicted
lobal	I Cak	mode	apphination
label	wavenumber	niode	combination
		assignment	mode
	7724 + 2	*	wavenumber-*
а	7734 ± 3	$v_7 + v_{48} + v_{50}$	7740
1	7465 . 4	$v_9 + (v_6 + v_7) + v_{50}$	7728
b	7465 ± 4	$2 v_8 + v_{49}$	7479
		$v_{30} + v_{47} + v_{49}$	/4/8
		$2 v_9 + v_{47}$	7474
		$\nu_7 + \nu_{46} + \nu_{48}$	7474
		$v_7 + 2 v_{47}$	7470
		$v_{22,23} + 2 v_{50}$	7468
		$v_8^+ + v_9^+ + v_{48}^+$	7465
		$v_9^* + (v_6^* + v_7^*) + v_{46}$	7456
		$v_{30} + 2 v_{48}$	7455
		$v_{27} + v_{47} + v_{50}$	7445
c	7406 ± 3	$v_6^* + v_{49} + v_{50}$	7426
		$v_{30} + v_{46} + v_{49}$	7420
		$2 v_9^* + v_{46}$	7416
		$v_{26} + v_{48} + v_{50}$	7414
		${v_7}^* + {v_{46}} + {v_{47}}$	7412
		$v_8^* + v_9^* + v_{47}$	7403
		$v_{22,23} + v_{49} + v_{50}$	7401
		$2 v_8^* + v_{48}$	7394
		$v_{30} + v_{47} + v_{48}$	7393
		$v_{27} + v_{46} + v_{50}$	7387
d	7320 ± 2	$v_{30} + v_{46} + v_{48}$	7335
		$v_{22,23} + 2 v_{49}$	7334
		$2 v_8^* + v_{47}$	7332
		$v_{30} + v_{47} + v_{47}$	7331
		$v_{27} + v_{46} + v_{49}$	7320
		$v_{22,23} + v_{48} + v_{50}$	7316
e	6993 ± 2	2 v ₅₁	7014
		$v_6^* + v_{46} + v_{47}$	7007
		$v_{18} + v_{47} + v_{50}$	6987
		$v_{22,23} + v_{46} + v_{47}$	6982
		$v_{18} + v_{48} + v_{49}$	6982
		$v_3^* + v_{49} + v_{49}$	6978
		$v_5^* + v_{46} + v_{50}$	6973

f	6903 ± 4	$v_{18} + v_{47} + v_{49}$	6920
		$v_5^* + v_{46} + v_{49}$	6906
		$v_3^* + v_{47} + v_{50}$	6898
		$v_{18} + v_{48} + v_{48}$	6897
		$v_3^* + v_{48} + v_{49}$	6893
g	6407 ± 1	$v_{48} + v_{50}$	6436
		$v_{27} + v_8^* + v_{49}$	6424
		$v_{22,23} + (v_6^* + v_7^*) + v_{50}$	6411
		$v_{27} + v_9^* + v_{48}$	6410
		$v_{26} + v_9^* + v_{49}$	6402
		$v_{26} + v_8^* + v_{50}$	6398
		$v_6^* + v_9^* + v_{50}$	6396
		$v_{30} + v_9^* + v_{46}$	6390
		$v_{27} + (v_6^* + v_7^*) + v_{47}$	6388
		$3 v_8^*$	6378
		$v_{47} + v_{50}$	6374
h	6161 ± 1	$v_6^* + v_8^* + v_{48}$	6173
		$v_6^* + (v_6^* + v_7^*) + v_{46}$	6164
		$v_{46} + v_{48}$	6164
		2 v47	6160
		$v_{22,23} + v_9^* + v_{47}$	6157
		$v_5^* + v_9^* + v_{50}$	6148
		$v_{22,23} + v_8^* + v_{48}$	6148
		$v_{18} + (v_6^* + v_7^*) + v_{50}$	6144
i	6000 ± 1	$v_3^* + v_9^* + v_{50}$	6015
		$v_5^* + v_8^* + v_{49}$	6010
		$v_5^* + v_9^* + v_{48}$	5996
		$v_{45} + v_{46}$	5993
		$v_{18} + (v_6^* + v_7^*) + v_{48}$	5992
		$v_3^* + (v_6^* + v_7^*) + v_{49}$	5988
j	5872 ± 1	$v_{18} + v_{8}^{*} + v_{48}$	5881
		$v_3^* + v_8^* + v_{49}$	5877
		$v_5^* + v_9^* + v_{46}$	5876
		$v_{18} + (v_6^* + v_7^*) + v_{46}$	5872
		$v_5^{+} + v_8^{+} + v_{47}$	5863
k	5800 ± 1	$v_3^* + v_9^* + v_{47}$	5801
		$v_7^* + 2 (v_6^* + v_7^*)$	5784

The wavenumbers and possible vibrational mode assignments for the peaks a) to k) in Figure 10 are presented in Table S1. If all 31 observed fundamental modes of [MAT][DCA] are considered, then there are 32 combinations of two modes and 1630 combinations of three modes in the 5500 to 8000 cm⁻¹ spectral region. In Table S1, we therefore only list the reduced number of combination modes expected to produce larger absorbances.