Supplementary Information

An Interstellar Synthesis of Phosphorus Oxoacids

Turner et al.

prior to the infadiation, after the infadiation, and of the residues at 500 K.							
Pristine ice, before irradiation (5 K)							
Assignment	Position with ¹⁰ O	Position with ¹ °O	Reference				
	(cm ⁻¹)	(cm ⁻¹)	1				
$\operatorname{CO}_2(v_2)$	651	638	1				
$PH_3(v_2)$	985	985	2				
$PH_3(v_4)$	1107	1107	2				
$CO_2 (v_1)/CO_2 (2v_2)^*$	1226, 1336	1276, 1383	1				
$PH_{3}(2v_{4})$		2207	2				
$^{13}CO_2(v_3)$	2278	2245	1				
$PH_3 (v_1 / v_3)$	2317	2314	2				
$CO_2(v_3)$	2325	2292	1				
$CO_2 (v_3 + v_L)$	2398-2440	2360-2390	1				
$PH_3(v_1 + v_4)$	3428	3428	2				
$CO_2(2v_2 + v_3)$	3596	3511	1				
$CO_2 (v_1 + v_3)$	3702	3622	1				
	New peaks after	r irradiation (5 K)					
A agi an mant	Desition with 160	Desition with 180	Defenence				
Assignment	Position with ¹³ O	Position with ¹³ O	Reference				
	(cm ⁻)	(cm ⁻)	3				
v(P-O)	880-1010	850-950	1				
$O_3(v_3)$	1040	975	7				
$\delta(\mathrm{PH}_2)$	1030	1025	3				
v(P=O)	1180-1370	1150-1340	5				
$H_2O(v_2)$	1650	1630	3				
δ (O=P-OH)	1730	1700	3				
ν(C=O)	1780	1750	3				
13 CO (v ₁)	2090	2042	1				
$CO(v_1)$	2140	2090	1				
P-OH $v(OH)$		2150	3				
v(PH)	2315	2230	3				
$P_2H_4(v_1)$	2280	2265	6				
P-OH v(OH)	2875	2650-2800	3				
$H_2O(v_1(in phase))$	2970	2960	5				
$H_2O(v_3(transversal))$	3230	3200	5				
$H_2O(v_2(longitudinal))$	3410	3360	5				
$H_2O(v_1(out of phase))$	3510	3460	5				
	Residue	= (300 K)					
Assignment	Position with ¹⁶ O	$\frac{180}{100}$	Pafaranca				
Assignment	(cm^{-1})	(cm^{-1})	Reference				
$w(\mathbf{P},\mathbf{O})$	(cm) 020 1040	010 1020	3				
$V(\mathbf{F} - \mathbf{O})$	930-1040	910-1050	3				
$v(\mathbf{P},\mathbf{n}_2)$	1000-1113	1030-1113	3				
$v(\mathbf{r}=\mathbf{U})$	1150-1550	1140-1300	3				
$\partial(O=P-OH)$	1530-1700	1530-1730	3				
P-OH v(OH)	21/0	2160	3				
v(PH)	2270	2270	3				
P-OH v(OH)	2450-2720	2450-2680	2				
<i>v</i> (OH)	2780-3500	2780-3300	3				

Supplementary Table 1 Infrared assignments for phosphine (PH₃) –carbon dioxide (CO₂) ices at 5 K prior to the irradiation, after the irradiation, and of the residues at 300 K.

Note. $v_{\rm L}$ defines the lattice mode.

*Fermi resonance

Pristine ice, before irradiation (5 K)							
Assignment	Position with ¹⁶ O	Position with ¹⁸ O	Reference				
	(cm^{-1})	(cm^{-1})					
$H_2O(v_L)$	770	740	5				
$PH_3(v_2)$	983	983	2				
$PH_{3}(v_{4})$	1101	1103	2				
$H_2O(v_2)$	1650	1640	5				
$PH_3 (v_1 / v_3)$	2319	2314	2				
$H_2O(v_1(in phase))$	3040	3090	5				
$H_2O(v_3(transversal))$	3220	3250	5				
H ₂ O (v ₃ (longitudinal))	3380	3375	5				
H_2O (v ₁ (out of phase))	3550	3440	5				
	New peaks a	fter irradiation (5 K)		_			
Assignment	Position with ¹⁶ O	Position with ¹⁸ O	Reference	_			
-	(cm^{-1})	(cm^{-1})					
v(P-O)	950	970	3				
$\delta(\mathrm{PH}_2)$	1045	1090	3				
v(P=O)	1140-1300	1140	3				
δ (O=P-OH)	1710	1670	3				
P-OH ν (OH)	2170	2160	3				
$P_2H_4(v_1)$	2280	2275	6				
v(OH)	2900	2910	3				
Residue (300 K)							
Assignment	Position with ¹⁶ O	Position with ¹⁸ O	Reference				
-	(cm^{-1})	(cm^{-1})					
v(P-O)	790-950	780-930	3				
$\delta(\mathrm{PH}_2)$	1040	1050	3				
v(P=O)	1120-1320	1100-1300	3				
δ (O=P-OH)	1550-1670	1530-1640	3				
v(PH)	2230	2240	3				
P-OH v(OH)	2700	2460-2660	3				
v(OH)	2950-3000	2750-3300	3				

Supplementary Table 2 Infrared assignments for phosphine (PH_3) – water (H_2O) ices at 5 K prior to the irradiation, after the irradiation, and of the residues at 300 K.

Note. v_L defines the lattice mode.

Positive Ions		Negative Ions					
Pyrophosphoric Acid, H ₄ P ₂ O ₇							
$H_5P_2O_7^+$	17.1	$H_{3}P_{2}O_{7}^{-}$	45.2				
$\mathrm{H_4PO_4^+}$	100	$HP_2O_6^-$	93.0				
$H_2PO_3^+$	18.9	$H_2PO_4^-$	8.2				
$H_4PO_2^+$	5.2	PO_3^-	100				
$H_2PO_2^+$	9.8	PO_2^-	16.9				
PO_2^+	13.3						
PO^+	10.2						
Phosphoric Acid, H ₃ PO ₄							
$H_4PO_4^+$	100	$H_2PO_4^-$	23.8				
$H_2PO_3^+$	28.1	PO_3^-	100				
$H_4PO_2^+$	1.1	PO_2^-	2.0				
$H_2PO_2^+$	9.3						
PO_2^+	4.3						
\mathbf{PO}^+	20.7						
Phosphorous Acid, H ₃ PO ₃							
$H_4PO_3^+$	100	$H_2PO_3^-$	17.7				
$H_2PO_3^+$	17.5	PO_3^-	100				
$H_4PO_2^+$	7.4	PO_2^-	37.8				
$H_2PO_2^+$	72.6						
PO_2^+	1.4						
PO^+	72.3						

Supplementary Table 3 SIMS calibration data of pure pyrophosphoric acid, phosphoric acid, and phosphorous acid scaled to the intensity of the most intense signal.

	PH ₃ /CO ₂		PH ₃ /H ₂ O		PH ₃ /C ¹⁸ O ₂		PH ₃ /H ₂ ¹⁸ O	
Positive Ions	Ion Counts $(\times 10^5)$	Corrected Ion Counts $(\times 10^5)$	Ion Counts $(\times 10^5)$	Corrected Ion Counts $(\times 10^5)$	Ion Counts $(\times 10^5)$	Corrected Ion Counts $(\times 10^5)$	Ion Counts $(\times 10^5)$	Corrected Ion Counts $(\times 10^5)$
$H_5P_2O_7^+$	1.8	0	1.4	0	0.22	0	0.07	0
$H_4PO_4^+$	11.5	0.9	9.3	1.0	3.3	21	5.9	5.5
$H_4PO_3^+$	3.3	0	0.9	0	0.4	0	0.3	0
$H_2PO_3^+$	5.7	2.9	6.0	4.0	1.0	0.2	2.6	0.9
$H_2PO_2^+$	6.1	2.6	3.6	2.1	4.7	4.1	10.4	9.6
Negative Ions	Ion Counts $(\times 10^5)$	Corrected Ion Counts $(\times 10^5)$	Ion Counts $(\times 10^5)$	Corrected Ion Counts $(\times 10^5)$	Ion Counts $(\times 10^5)$	Corrected Ion Counts $(\times 10^5)$	Ion Counts $(\times 10^5)$	Corrected Ion Counts $(\times 10^5)$
$H_3P_2O_7^-$	4.0	0	6.1	0	0.3	0	0.3	0
$HP_2O_6^-$	52.8	44.5	29.9	17.4	0.8	0.3	0.1	0
$H_2PO_4^-$	3.0	2.2	5.1	4.0	4.1	4.0	1.6	1.5
$H_2PO_3^-$	1.1	0	0.8	0	0.8	0	0.5	0
PO_3^-	37.9	13.2	35.0	0.5	17.8	0	7.4	0
PO_2^-	9.9	5.8	10.5	6.3	3.8	1.6	1.9	0.5

Supplementary Table 4 SIMS analysis of the residues formed at 5000 nA irradiation showing the raw ion counts and accounting for overlapping ion counts from various oxoacids (corrected ion counts) exploiting the calibration experiments.

Compound	$R_{t1}^{[a]}$	$R_{t2}^{[b]}$	MS-fragmentation / ¹⁸ O sample		MS-fragmentation / ¹⁶ O standard	
	[min]	[sec] [M ^{+•}]		Other important ions, m/z	[M ^{+•}]	Other important ions, m/z
Hypophosphorous acid (+I)	12.40	2.7	214	199, 73	210	195, 73
Phosphonic acid (+III)	13.24	1.6	304	289, 207, 147, 133, 75	298	283, 207, 147, 133, 75
Phosphoric acid (+V) ^[c]	18.59	1.6	322	307, 291, 147, 133, 73, 45	314	299, 283, 211, 147, 133, 73, 45
Phosphoric acid (+V) ^[d]			320	305, 289, 147, 133, 73, 45		

Supplementary Table 5 Identified phosphorus oxoacids as trimethylsilyl (TMS) derivatives by GC×GC-TOFMS.

[a] GC×GC retention time 1st dimension. [b] GC×GC retention time 2nd dimension. [c] $[M^{+*}] = 322$ corresponds to $H_3P^{18}O_4$ and [d] $[M^{+*}] = 320$ to $H_3P^{18}O_3^{-16}O_5$.

Supplementary Figure 1 Tautomeric forms of trimethylsilyl (TMS) derivatives of H_3PO_2 (a) and H_3PO_3 (b). The characteristic molecular ion peak $[M]^+$ as well as $[M-15]^+$ of the ¹⁸O-TMS derivatives of hypophosphorous acid and phosphorous acid, respectively, revealed the formation of both phosphorus oxoacids in the residues of the irradiated phosphine-doped interstellar ice analogues.

Supplementary Table 6 Calculated enthalpies of formation at 0 K for distinct isomers of phosphorus oxoacids.

Structure	Formula	Name	$\Delta_{\rm f} H ({ m eV})^{ m a}$
	H ₃ PO	Phosphine oxide	-3.63
	H ₂ POH	Hydroxyphosphine	-3.60
}	H ₂ P(O)OH	Phosphinic acid	-6.76
	HP(OH) ₂	Hypophosphorous acid	-6.39
	HPO(OH) ₂	Phosphonic acid	-10.04
•	P(OH) ₃	Phosphorous acid	-9.52
	PO(OH) ₃	Phosphoric acid	-13.13
^a CCSD(T)/CB	S		

Supplementary Figure 2 PI-ReTOF-MS data as a function of temperature during TPD for the unirradiated ice mixtures of $PH_3/C^{18}O_2$ (top) and $PH_3/H_2^{18}O$ (bottom) at 10.86 eV photoionization energy. The strong signal at m/z = 34 results from PH₃, while H₂O and CO₂ have higher ionization energies than 10.86 eV and thus are not observed. It shall be highlighted that no oxoacids are observed in these blank experiments.

Supplementary Figure 3 GC×GC-TOFMS chromatogram of the blank experiments from the mixtures of PH₃/C¹⁸O₂ (top) and PH₃/H₂¹⁸O (bottom). Mass-to-charges (m/z) of 214 (×100) and 304 (×150) were selected for the above representation (*z*-axis = 600,000). It shall be highlighted that no oxoacids are observed in these blank experiments.

Supplementary References

- 1. Bennett, C. J., Jamieson, C., Mebel, A. M. & Kaiser, R. I. Untangling the formation of the cyclic carbon trioxide isomer in low temperature carbon dioxide ices. *Phys Chem Chem Phys* **6**, 735-746 (2004).
- 2. Turner, A. M., Abplanalp, M. J. & Kaiser, R. I. Probing the carbon–phosphorus bond coupling in low-temperature phosphine (PH₃)–methane (CH₄) interstellar ice analogues. *Astrophys J* **819**, 97 (2016).
- 3. Socrates, G. Infrared and Raman Characteristic Group Frequencies, Third Edition. (John Wiley & Sons, Ltd., 2004).
- 4. Ennis, C. P., Bennett, C. J. & Kaiser, R. I. On the formation of ozone in oxygen-rich solar system ices via ionizing radiation. *Phys Chem Chem Phys* **13**, 9469-9482 (2011).
- 5. Hagen, W., Tielens, A. & Greenberg, J. The infrared spectra of amorphous solid water and ice Ic between 10 and 140 K. *Chem Phys* 56, 367-379 (1981).
- 6. Durig, J., Shen, Z. & Zhao, W. Conformational stability, structural parameters, and vibrational frequencies from ab initio calculations for biphosphine. J *Mol Struct: THEOCHEM* **375**, 95-104 (1996).