Supporting Information

A VUV Photoionization Study on the Formation of the Simplest Polycyclic Aromatic Hydrocarbon: Naphthalene (C₁₀H₈)

Long Zhao, Ralf I. Kaiser*,1

Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822

Bo Xu, Utuq Ablikim, Musahid Ahmed*,2

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Marsel V. Zagidullin and Valeriy N. Azyazov Samara National Research University, Samara 443086, Russia and Lebedev Physical Institute, Samara 443011, Russia

A. Hasan Howlader and Stanislaw F. Wnuk

Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199

Alexander M. Mebel^{*,3}

Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199 and Samara National Research University, Samara 443086

¹ E-mail: ralfk@hawaii.edu

² E-mail: mahmed@lbl.gov

³ E-mail: mebela@fiu.edu

1. Synthesis of 4-phenylvinylacetylene (P3) and *trans*-1-phenylvinylacetylene (P2)

The 4-phenylvinylacetylene (**P3**) was synthesized by CuI/Pd(PPh₃)₄-mediated Sonogashira coupling between phenylacetylene and vinyl bromide in 83% yield. The *trans*-1-phenylvinylacetylene (**P2**) was prepared by CuI/Pd(PPh₃)₂Cl₂ coupling between β -bromostyrene and (trimethylsilyl)acetylene followed by desilylation in 95% yield.

General information

¹H (400 MHz) and ¹³C (100.6 MHz) NMR spectra were recorded at ambient temperature in solution of CDCl₃. Reaction progress was monitored by TLC on Merck Kieselgel 60- F_{254} sheets with product detection by 254-nm light. Products were purified by column chromatography using Merck Kiselgel 60 (230-400 mesh). Reagent grade chemicals were used and solvents were dried by reflux and distillation from CaH₂ under N₂ unless otherwise specified.

4-Phenylvinylacetylene (But-3-en-1-yn-1-ylbenzene); P3.

Pd(PPh₃)₄ (11.6 mg, 0.01 mmol) and Cu(I)I (7.6 mg, 0.04 mmol) were placed in the flame-dried flask under N₂ at 0 °C (ice-bath). Then Et₂NH (1 mL, 707 mg, 9.67 mmol) followed by phenylacetylene (220 μ L, 204 mg, 2.0 mmol) and vinyl bromide (2.6 mL; 1.0 M in THF, 2.6 mmol) were added and the resulting mixture was allowed to warm up to ambient temperature and was stirred for 3h [progress of the reaction was monitored by TLC (hexane)]. The reaction mixture was partitioned between water (5 mL) and *iso*pentane/diethyl ether (5 mL; 1:1, v/v). The organic layer was separated and the aqueous layer was extracted with *iso*pentane/diethyl ether twice. The combined organic layer was washed with 1 M HCl, dried (Na₂SO₄) and carefully evaporated (below 30 ° C). The residue was column chromatographed (*n*-hexane) to give **P3**¹ (212 mg, 83%) as colorless liquid: ¹H NMR: (CDCl₃, 400 MHz) δ 5.55 (dd, *J* = 11.2, 2.0 Hz, 1H); 5.74 (dd, *J* = 17.6, 2.0 Hz, 1H); 6.03 (dd, *J* = 17.6, 11.2 Hz, 1H); 7.32-7.30 (m, 3H); 7.47-7.33 (m, 2H); ¹³C NMR (CDCl₃, 100.6 MHz): δ 88.22, 90.10, 117.32, 123.28, 127.04, 128.40, 128.46, 128.52, 131.63, 131.80.

trans-1-phenylvinylacetylene (1-Buten-3-yn-1-ylbenzene); P2.

Step a. Pd(PPh₃)₂Cl₂ (10.9 mg, 0.016 mmol) and Cu(I)I (5.9 mg, 0.031 mmol) were added to dry THF (5 mL) flame-dried round bottom flask equipped with a stir bar under N₂. Then β-bromostyrene (100 µL, 142 mg, 0.78 mmol) was added followed by TMS-acetylene (161.3 µL, 114 mg, 1.16 mmol) and Et₃N (216 µL, 157 mg, 1.56 mmol). The resulting mixture was stirred at ambient temperature for 5 h [progress of the reaction was monitored by TLC (*n*-hexane)]. The reaction mixture was then diluted with EtOAc and filtered through a short pad of silica. Volatiles were evaporated and the residue was column chromatographed (*n*-hexane) to give TMS-protected **P2** as colorless liquid (150 mg, 96%): ¹H NMR (CDCl₃, 400 MHz) δ 0.23 (s, 9H); 6.18 (d, *J* = 16.4 Hz, 1H); 7.01 (d, *J* = 16.4 Hz, 1H), 7.28-7.39 (m, 5H). *Step b.* K₂CO₃ (100 mg, 0.72 mmol) was added to a stirred solution of the product from *step a* (145 mg, 0.72 mmol) in MeOH (5.0 mL) at room temperature. After for 30 min, volatiles were evaporated in vacuo and the residue was column chromatographed (*n*-hexane) to give **P2**² (91 mg, 99%) as colorless liquid: ¹H NMR (CDCl₃, 400 MHz) δ 3.06 (d, *J* = 2.4 Hz, 1H); 6.14 (dd, 16.4, *J* = 2.4 Hz, 1H); 7.05 (d, *J* = 16.4 Hz, 1H); 7.30-7.32 (m, 3H); 7.34-7.40 (m, 2H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 79.33, 83.00, 107.13, 126.38, 126.59, 128.96, 136.00, 143.31.

Figure S1. ¹H NMR and ¹³C NMR spectra of compound P3

Figure S2. ¹H NMR and ¹³C NMR spectra of compound P2

2. Modeling of the gas flow and kinetics of the phenyl – vinylacetylene system

2.1 Geometry of the task

The axial symmetrical design model of the microreactor is presented in Figure S3 and employed in the COMSOL Multiphysics package.

Figure S3. Dimensions of the microreactor in millimeters (mm). The materials and dimensions are compiled in Table S1.

Table S1. Specifications of the main details of the microreactor model.

Part	Size	Material
Graphite reactor	Tube of 2 mm outer diameter, 1 mm inner diameter,	SiC
_	38.1 mm length	
Stainless steel housing	17.6 mm of outer diameter, 62.4 mm of total length. 2	Stainless steel
	mm internal channel 22.4 mm of length. The inner	
	cylindrical channel 6 mm of diameter, 40 mm of length.	
Heat exchanger	hollow cylinder outer diameter of 17.6 mm, inner	Copper
	diameter of 9.3 mm, length of 25.4 mm	
Graphite Electrodes	Ring 3 mm in thickness, 2 mm of inner diameter, 6.5	Graphite
	mm of outer diameter	
Choke orifice intended to meter gas	0.1 mm in diameter, 0.5 mm of thickness	Stainless steel
flow rate		

2.2. Input gas

A gas mixture of C_4H_4 (4.83 ± 0.01%) and He (94.5 ± 0.1 %) along with C_6H_5NO (2.58 ± 0.15 %) was introduced at a temperature of $T = 323.0 \pm 0.5$ K upstream of the choke orifice at an inlet pressure p = 300 Torr upstream of the choke orifice. The maximum temperature is 1,600 K at the SiC microreactor surface. The measured relative fractions of the $C_{10}H_8$ isomers at the exit of the microreactor are presented in Table S2.

Table S2. Relative fractions of the $C_{10}H_8$ isomers at the exit of the microreactor.

Naphthalene	P1	$43.5\pm9.0~\%$
trans-1-phenylvinylacetylene	P2	$6.5\pm1.0~\%$
4-phenylvinylacetylene	P3	$50\pm10\%$
Total		100 %

2.3. Equations

2.3.1. Electric current

The electric potential is employed to the graphite electrodes. The Conductive Media DC COMSOL module was used to solve this problem:

$$-\nabla\left(\left(\frac{1}{rs}\right)\nabla V\right) = 0\tag{1}$$

Here V is the electric potential, rs is the resistivity depending on temperature. The material physical properties used are shown in Table S3.

2.3.2. Heat transfer

The electric current results in heating of the SiC reactor. The released heat is transferred to stainless steel housing and copper heat exchanger. Another part of released heat is radiative emitted through the outer surface of the set-up. An ideal heat contact between details of the set-up is assumed. The hot inner surface of the SiC reactor heats gas flow in reactor.

The general Heat Transfer module of COMSOL package was used to solve this problem:

For solids:

$$\nabla(\lambda\nabla)\mathbf{T} + \mathbf{Q} = \mathbf{0} \tag{2}$$

Here, λ is the heat conductivity, Q is the volume heat power. Q = 0 for stainless steel housing and copper heat exchanger. For graphite and the SiC tube resistive heat source is Q = J²rs, $J = -(\frac{1}{rs})\nabla V$ is the current density, rs is electric resistivity.

For the gas flow, the heat transfer equation applicable for a high Mach number flow was used:

$$C_p \rho (\vec{U} \nabla) T = \nabla (\lambda \nabla) T + \vec{\tau} \cdot \vec{S} - \frac{T}{\rho} \frac{\partial \rho}{\partial T} (\vec{U} \nabla) p + Q$$
(3)

Here, C_p is the heat capacity per unit mass, ρ is the gas density, U is the gas velocity, $\vec{\tau}:\vec{S}$ is heat release due to gas viscosity, τ is the viscous stress tensor, $S = 0.5 (\vec{\nabla}\vec{U} + (\vec{\nabla}\vec{U})^T)$, $\frac{T}{\rho} \frac{\partial \rho}{\partial T} (\vec{U}\nabla)p$ is the heat transformation of kinetic energy to heat. Internal heat power in the gas is negligible in comparison with heat transfer from SiC walls. So, in gas Q = 0. The material physical properties used are shown in Table S3. The boundary

conditions for the heat transfer equations used are listed in Table S4. Heat conductivity of two component gas was calculated using correlation from Reference ³. The transport properties of pure gases were taken from References ⁴ and ⁵.

SiC			
$\rho(g/cm^3)$	3.23		
$C_p(erg/g/K)$	$(1.54 \times 10^{6} + 34790 \times \text{T} - 29.92 \times \text{T}^{2} + 0.00878 \times \text{T}^{3})$		
$rs(erg*cm/A^2/s)$, resistance	$10^7 \times (3.6 + 11.79 \times \exp(-(T - 300)/608.48))$		
3	0.85		
λ, erg/cm/s/K	$10^5 \times (40.21 + 523.43 \times \exp(-2.16 \times 10^{-3} \text{T}))$		
	Graphite		
$\rho(g/cm^3)$	1.7		
$C_p(erg/g/K)$	2.1391e7-2.5848×exp(-T/492.3)		
$rs(erg \times cm/A^2/s)$	8×10 ³ (1+0.0002×(T-300))		
3	0.7		
λ , erg/cm/s/K	4155400+23650000×exp(-0.0021×T)		
	Stainless steel		
$\rho(g/cm^3)$	7.9		
$C_p(erg/g/K)$	5×10^{6}		
3	0.2		
λ, erg/cm/s/K	1.254×10^{6}		
	Copper		
$\rho(g/cm^3)$	8.93		
$C_p(erg/g/K)$	3560000+985.5×T		
λ, erg/cm/s/K	42400000-7860×T		
	He		
$C_p(erg/g/K)$	5.19e7		
λ, erg/cm/s/K	$100000 \times 10^{(-2.2915+0.0349 \times \log 10(T)^{2}+0.51161 \times \log 10(T))}$		
μ (g/cm/s)	$10 \times (2.858 \times 10^{-6} - 1.866e - 011 \times T^2 + 6.149 \times 10^{-8} \times T)$		
	C ₄ H ₄		
$C_p(erg/g/K)$	$(-3.43 \times 10^{6} + 82602 \times T - 93.61 \times T^{2} + 0.0418 \times T^{3})$		
λ , erg/cm/s/K	$1e5 \times (8.2 \times 10^{-3} + 5.8647 \times 10^{-5} \times T + 6.3342 \times 10^{-8} \times T^{2} - 2.58 \times 10^{-11} \times T^{3})$		
μ (g/cm/s)	$(-11.8158 + 0.34 \times T - 1.0362 \times 10^{-4} \times T^{2} + 1.928 \times 10^{-8} \times T^{3}) \times 10^{-6}$		

Table S3. Physical properties of the materials exploited in the microreactor (CGSE system).

Table S4. Boundary conditions for the heat transfer equations.

SiC outer surface	$\varepsilon\sigma(T^4-T_a^4)$ *
Graphite outer surface	$\varepsilon\sigma(T^4-T_a^4)$
Stainless steel housing outer surface	$\varepsilon\sigma(T^4-T_a^4)$
Copper heat exchanger outer surface	T=300K
Internal surface of SiC tube	Continuity of temperature and heat flux
Internal surface of stainless steel housing	Thermal insulation, i.e. temperature of the surface
	exclusively depends on heat transfer in stainless steel
	housing
Inner surfaces between materials	Continuity of temperature and heat flux
Gas temperature at the entrance to choke orifice	Equal to the temperature of choke orifice
Gas temperature at the entrance to SiC tube	Gas temperature= temperature at the entrance face of
	SiC tube
Heat flux at the exit SiC reactor	Convective flux

* ϵ is the emissivity of the material, $T_a = 300$ K is the ambient temperature, σ is the Stephan-Boltzmann constant.

2.3.3. Navier-Stocks equation to describe gas motion in the SiC reactor

$$\rho \vec{\mathbf{U}} \cdot \vec{(\nabla \vec{\mathbf{U}})} = \vec{\nabla} \left(-pI + \mu \left(\vec{\nabla \vec{\mathbf{U}}} + \left(\vec{\nabla \vec{\mathbf{U}}} \right)^T \right) - \mu \cdot \frac{2}{3} \vec{\nabla} \left(\vec{\mathbf{U}} \right) I \right)$$
(4)

Here p is the gas pressure, μ is the dynamic viscosity, $(\mu \vec{\nabla} \vec{U})^T$ is a transposed matrix, I is unit vector. Boundary conditions are listed in Table S5.

Table S5. Boundary conditions for equation (4).

Inlet to SiC tube	p ₁ pressure
Outlet from SiC tube	p_2 pressure
Axis of SiC tube	Symmetry $\frac{\partial y}{\partial r} = 0$ for all y
Wall of SiC surface	No slip (U=0)

The viscosity of the two-component He + C_4H_4 gas was calculated using the correlation from Reference S3. A contribution of C_6H_5NO and other products was neglected.

2.4. Mass transfer equations

The concentrations of C_6H_5NO , C_4H_4 , and reaction products are much less than the total number density of He. So, we used mass transfer equations for strongly diluted components in the He gas. 18 mass transfer equations were included:

$$\nabla(-D_i \nabla C_i) = R_{Ci} - U \nabla C_i, i = 1-18$$
(5)

Here C_i is the molar fraction of component i: C_i=p_i/p, p_i is the partial pressure of the i-th component, listed in Table S6. In modeling the assumption of strong dilution (C_i<<1) is quite important for correction of equation (5). R_{Ci}[fraction/s] is the rate of production of the i-th component. For monomolecular reaction A \rightarrow products, the reaction rate is R_A = k_A×C_A. For bimolecular reaction A + B, the reaction rate is R_{AB} = k_A×C_A. For bimolecular reaction A + B, the reaction rate is R_{AB} = k_A×C_A. For bimolecular reaction A + B, the reaction rate is R_{AB} = k_ABC_AC_BN, where C is molar fraction, N (mol/cm³) is the total number density. The list of chemical species involved and rate constants of all the reactions (the kinetic package) used are presented in Tables S6 and S7. We implied the following kinetic mechanism:

$C_6H_5NO \leftrightarrows C_6H_5 + NO$	(R1)
$C_4H_4 \rightarrow C_2H_2 + CCH_2/C_2H_2$	(R2)
$C_6H_5 + C_4H_4 \rightarrow naphthalene + H$	(R3a)
$C_6H_5 + C_4H_4 \rightarrow trans-1$ -phenylvinylacetylene + H	(R3b)
$C_6H_5 + C_4H_4 \rightarrow 4$ -phenylvinylacetylene + H	(R3c)
<i>trans</i> -1-phenylvinylacetylene + H \rightarrow naphthalene + H	(R4)
4-phenylvinylacetylene + H \rightarrow C ₆ H ₅ + C ₄ H ₄	(R5a)
4-phenylvinylacetylene + H \rightarrow trans-1-phenylvinylacetylene + H	(R5b)
4-phenylvinylacetylene + H \rightarrow naphthalene + H	(R5c)
$C_6H_5 + C_2H_2 \rightarrow C_6H_5CCH \text{ (phenylacetylene)} + H$	(R6)
$C_4H_4 + H \leftrightarrows C_2H_2 + C_2H_3$	(R7)
$C_2H_3 \leftrightarrows C_2H_2 + H$	(R8)
$C_6H_5 + H \leftrightarrows C_6H_6$ (benzene)	(R9)
C_6H_6 (benzene) + H \leftrightarrows C_6H_5 + H_2	(R10)
C_6H_6 (benzene) + H \leftrightarrows C_6H_6 (fulvene) + H	(R11)
$C_6H_5 + H \leftrightarrows C_3H_3 + C_3H_3$	(R12)
$C_3H_3 + C_3H_3 \rightarrow C_6H_6$ (benzene)	(R13a)
$C_3H_3 + C_3H_3 \rightarrow C_6H_6$ (fulvene)	(R13b)
$C_3H_3 + C_2H_2 \leftrightarrows c - C_5H_5$	(R14)
$C_6H_5 + C_4H_4 \leftrightarrows i - C_4H_3 / n - C_4H_3 + C_6H_6$	(R15)
$H + C_4H_3 \leftrightarrows C_4H_4$	(R16)
$H + C_4H_4 \leftrightarrows H_2 + C_4H_3$	(R17)
$C_2H_2 + C_4H_3 \rightarrow C_6H_5$	(R18)
$H + C_4H_4 \leftrightarrows C_4H_5$	(R19)
$C_2H_2 + C_4H_5 \rightarrow C_6H_6 \text{ (benzene)} + H$	(R20a)
$C_2H_2 + C_4H_5 \rightarrow C_6H_6 \text{ (fulvene)} + H$	(R20b)

		List of species	
	Formula		Name
1	C ₆ H ₅ NO		Nitroso-benzene
2	C ₆ H ₅		Phenyl radical
3	C_4H_4	CH ₂ =CHCCH	Vinylacetylene (But-1-en-3-yne)
4	C_2H_2	Н-С≡С-Н	Acetylene
5	C ₁₀ H ₈	2 rings	P1, Naphthalene
6	C ₁₀ H ₈	C ₆ H ₅ -CH=CH-C≡CH	P2
7	C ₁₀ H ₈	$C_6H_5-C\equiv C-CH=CH_2$	P3
8	Н		Atomic hydrogen
9	C ₈ H ₆	C ₆ H ₅ -C≡C-H	Phenylacetylene
10	C ₂ H ₃	СН2=С-Н	Vinyl radical
11	C ₆ H ₆		Benzene
12	$C_6H_6(F)$	$C_5H_4=CH_2$	Fulvene
13	H ₂		Hydrogen molecule
14	NO		Nitrogen monoxide
15	C ₃ H ₃	$HC \equiv C - CH_2$	Propargyl radical
16	c-C ₅ H ₅		Cyclopropadienylidene radical
17	C ₄ H ₃		But-1-en-3-yn-2-yl
18	<i>i</i> -C ₄ H ₅	CH ₂ CHCCH ₂	But-1,3-dien-2-yl

Table S6. List of components involved in the reactions in the phenyl – vinylacetylene system.

Table S7. List of reactions and their nominal rate constants in the phenyl – vinylacetylene system with boundary conditions for equations (5) are listed in Table S8.

	Reaction		Rate constant, $\text{cm}^6 \text{ mol}^{-2} \text{ s}^{-1}$, $\text{cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$, or s^{-1}	1,600 K
				$cm_{3}^{6}s^{-1}$,
1.6				$cm^{3}s^{-1}, s^{-1}$
k_1°	$C_6H_5NO \rightarrow C_6H_5$	5 + NO	1.52e1/×exp(-55200/1.987/T)	4.10'
k _{1r} ′	$C_6H_5 + NO \rightarrow C_6$	₅ H ₅ NO	1.03e-11×exp(1940/8.31/T)×6e23	1.2.10-11
k _{2a} p2°	$C_4H_4 \rightarrow C_2H_2 +$	7.4 Torr	$1.03e71 \times T^{-16.4} \times exp(-16.4) \times exp(-16$	98
	CCH_2		$121900/1.987/T$)+1.46e47×T^(-10.04)×exp(-	
8			98810/1.987/1)	
$k_{2a}p3^{\circ}$	$C_4H_4 \rightarrow C_2H_2$	74 Torr	$3.7e52 \times 1^{(-11.68)} \times exp(-12.04)$	224
	$+ CCH_2$		$102200/1.987/T$)+7.96e62×1 $^{-13.84}$ ×exp(-	
1	1 1 /		$\frac{118900/1.987/1}{1000}$	_
k_{2a}	dependent on p	7.4 5	$k_{2a}p_{2+}(k_{2a}p_{3-}k_{2a}p_{2})/\log(10)\times\log(p/1333.3/7.4)$	
к _{2b} p2°	$C_4H_4 \rightarrow C_2H_2 +$	7.4 Torr	$4.22e68 \times 1^{-16.04} \times exp(-1216004) \times exp(-120604) \times exp$	5.7
	C_2H_2		$121600/1.987/1)+3.04e43\times1^{(-9.31)}\timesexp(-0.0770/1.087/T)$	
$1_{2} = 2^{8}$		74 7.000	987/0/1.987/1)	17
к _{2b} р5	$C_4H_4 \rightarrow C_2H_2+$	74 I OIT	$0.18048 \times 1^{-10.91} \times exp(-10.100/1.087/T) + 2.07550 \times TA(-12.18) \times exp(-10.100/1.087/T) + 2.07550 \times TA(-12.180/1.087/T) + 2.07550 \times TA(-12.180/1.087/T) + 2.07550 \times TA(-12.180/1.087/T) + 2.07550 \times TA(-12.180/1.087/T) + 2.07570 \times TA(-12.1$	1/
	C_2H_2		$101100/1.987/1)+3.97639\times1^{-13.18}\timesexp(-118200/1.087/T)$	
12	danandant on n		$\frac{110300/1.907/1}{k}$	
<u>k_{2b}</u>			$k_{2b}p_{2+}(k_{2b}p_{3-}k_{2b}p_{2})/10g(10)\times10g(p/1333.3/7.4)$	
$\frac{\mathbf{k}_2}{\mathbf{k}_2}$			$K_{2a} + K_{2b}$	1 22 10-14
K _{3a}	$C_6H_5 + C_4H_4 \rightarrow$		$5.05664 \times 1^{-1}(-20.90) \times exp(-5.02) \times ex$	1.55.10
	naphulaiene + H		26750/1.987/T)	
kar ⁹		D7 U	$1.81e69 \times T^{(-16.03)} \times exp(-$	6710-13
K _{3b}	$C_{6}II5 + C_{4}II4 \rightarrow FZ + II$		$1.01000 \times 1^{-1}(-10.05) \times exp(-10.05) \times e$	0.7.10
			19320/1 987/T)	
k2.9	$C_{c}H_{c} + C_{c}H_{c} \rightarrow 1$	P3 + H	9 34e36×T^(-6 72)×exp(-	1 38.10 ⁻¹²
K _{5C}	$C_{6}I15 + C_{4}I14 \rightarrow I 5 + I1$		$25850/1.987/T$)+4.63e76×T^(-16.56)×exp(-	1.50 10
			96340/1.987/T)	
k_4^{9}	$P2 + H \rightarrow naphthalene + H$		9.31e53×T^(-11.45)×exp(-	1.10^{-10}
-			$27780/1.987/T$)+1.08e35×T^(-6.12)×exp(-	1 10
			13800/1.987/T)	
k _{5a} 9	$P3 + H \rightarrow C_6H_5 + C_4H_4$		2.96e44×T^(-8.36)×exp(-	1.10-11
	0.0		35790/1.987/T)+4.64e35×T^(-19.64)×exp(-	
			112800/1.987/T)	
k_{5b}^{9}	$P3 + H \rightarrow P2 + 1$	H	1.16e62×T^(-13.64)×exp(-	$3.3 \cdot 10^{-12}$
			44450/1.987/T)+5.08e83×T^(-18.39)×exp(-	
			99730/1.987/T)	
k_{5c}^{9}	$P3 + H \rightarrow naphth$	nalene + H	1.39E+68×T^(-15.84)×exp(-	$1.4 \cdot 10^{-13}$
			47740/1.987/T)+7.19E+65×T^(-14.12)×exp(-	
10			78080/1.987/T)	
k_6^{10}	$C_6H_5 + C_2H_2 \rightarrow C_6H_5CCH$		3.08e34×T^(-6.06)×exp(-	$1.43 \cdot 10^{-12}$
	+ H		23190/1.987/T)+9.92e55×T^(-11.07)×exp(-	

			70330/1.987/T)	
k_7^{11}	$C_4H_4+H \rightarrow C_2H_2+C_2H_3$		0.10023e17×T^(-0.47407)×exp(-12128/1.987/T)	$1.1 \cdot 10^{-11}$
k _{7r} ¹¹	$C_2H_2 + C_2H_2 \rightarrow H + C_4H_4$		0.11184e11×T^0.88224×exp(-6654.1/1.987/T)	$1.5 \cdot 10^{-12}$
k_8^{12}	$C_2H_2 \rightarrow C_2H_2 + H$		3.94e12×(T/298)^1.62×exp(-155000/8.3/T)	$5.2 \cdot 10^8$
k_{8r}^{13}	$C_{2}H_{2} + H + He -$	\rightarrow C ₂ H ₃ +	3.31e-30×(6e23)^2×exp(-6150/8.31/T)	2.10^{-30}
	He			
k ₉ ¹⁴	$C_6H_5 + H \rightarrow C_6H$	[₆	exp(244.05-34871/T)×T^(-25.9)	$5.7 \cdot 10^{-11}$
$k_{9r}p1^{15}$	$C_6H_6 \rightarrow C_6H_5 + I$	H, $p = 30$	1.3489e108×T^(-25.81)×exp(-181750/1.987/T)	4.1
	Torr	-		
$k_{9r}p2^{15}$	$C_6H_6 \rightarrow C_6H_5 + I_6$	H, p = 50	6.3095e60×T^(-12.4)×exp(-148070/1.987/T)	7.2
	Torr	-		
k _{9r}	$C_6H_6 \rightarrow C_6H_5 + H_6$	Η,	$k_{9r}p1+(k_{9r}p2-k_{9r}p1)/(50-30)\times(p/1333.3-30)$	
	30 <p<50< td=""><td></td><td></td><td></td></p<50<>			
k_{10}^{16}	$C_6H_6 + H \rightarrow C_6H$	$I_5 + H_2$	4.57e8×T^1.88×exp(-14839/1.987/T)	$7.45 \cdot 10^{-12}$
k _{10r} ¹⁶	$C_6H_5 + H_2 \rightarrow C_6H_2$	$H_6 + H$	1.69e4×T^2.64×exp(-4559/1.987/T)	$1.93 \cdot 10^{-12}$
k_{11}^{17}	$C_6H_6 + H \rightarrow C_6H$	$I_6(F) + H$	6.54e25×T^(-2.8332)×exp(-43768/1.987/T)	$9.3 \cdot 10^{-14}$
k_{11r}^{17}	$C_6H_6(F) + H \rightarrow 0$	$C_6H_6 + H$	1.09e25×T^(-3.0678)×exp(-11761/1.987/T)	$6.7 \cdot 10^{-11}$
k_{12}^{15}	$C_6H_5 + H \rightarrow C_3H$	$I_3 + C_3 H_3$	0.18289e81×T^(-17.827)×exp(-75267/1.987/T)	$1.2 \cdot 10^{-11}$
k_{12r}^{15}	$C_3H_3 + C_3H_3 \rightarrow 0$	$C_6H_5 + H$	(10^30.42×T^(-11.94)×exp(-28973/1.987/T) +	$1.68 \cdot 10^{-12}$
			10^10.36×T^(-6.722)×exp(-	
15			13799/1.987/T))×6e23	12
k_{13a}^{15}	$C_3H_3 + C_3H_3 \rightarrow 0$	C_6H_6	$(10^{45.33}\times T^{(-16.73)}\times exp(-27864/1.987/T) +$	$8.9 \cdot 10^{-13}$
15			10^16.07×T^(-8.819)×exp(-7049/1.987/T))×6e23	12
k _{13b} ¹⁵	$C_3H_3 + C_3H_3 \rightarrow C_6H_6 (F)$		$(10^{45.59}\times1^{(-17.02)}\times\exp(-25864/1.987/1) +$	$3.5 \cdot 10^{-13}$
1 18		<u> </u>	$10^{2}0.46 \times 1^{(-10.31)} \times \exp(-7992/1.987/1) \times 6e23$	0.0.10-16
K ₁₄	$C_3H_3 + C_2H_2 \rightarrow C_3H_3 + C_2H_3 + C_2H_2 \rightarrow C_3H_3 + C_2H_3 + C$	$2 - C_5 H_5$	$6e23 \times 5.95e34 \times 1^{(-14.2)} \times exp(-31/00/1.98//1)$	8.8.10
K _{14r}	$c-C_5H_5 \rightarrow C_3H_3 +$	$+ C_2H_2$	7.55e99×1^(-24.4)×exp(-128200/1.987/1)	1.56.10
K ₁₅	$C_{6}H_{5} + C_{4}H_{4} \rightarrow r$	$i,i-C_4H_3 +$	$1.9/e2 \times 1^{-3}.08 \times exp(-4462, 1/1, 0.07/T) + 2.41e2 \times TA2, 11 \times exp(-4462, 1/1, 0.07/T) + 2.41e2 \times TA2, 11 \times exp(-4462, 1/1, 0.07/T) + 2.41e2 \times TA2, 11 \times exp(-462, 11 \times exp(-$	10
	C_6H_6		$4403.1/1.987/T$)+3.41e2×1 $^{-3.11}$ ×exp(-	
k9			$544.12 \times T^{2} 8052 \times exp(-$	10 ⁻¹²
K15r	$n, l - C_4 \Pi_3 + C_6 \Pi_6 - C_6 \Pi_6$	$\rightarrow C_6 \Pi_5 +$	$14648/1987/T$)+1936 1×T^3 0032×exp(-	10
			8387.1/1.987/T)	
$k_{16}p2^8$	$H + C_4 H_2 \rightarrow$	7.5 Torr	$8.16E+59\times T^{(-14.09)}\times exp(-20770.0/1.987/T)$	$1.4 \cdot 10^{-12}$
101	C ₄ H ₄		+5.88E+91×T^(-24.70)×exp(-26410.0/1.987/T)	
k ₁₆ p3 ⁸	$H + C_4 H_3 \rightarrow$	75 Torr	1.98E+65×T^(-15.12)×exp(-30460.0/1.987/T)	$9.25 \cdot 10^{-12}$
	C_4H_4		+1.14E+56×T^(-13.08)×exp(-16980.0/1.987/T)	
k ₁₆	$H + C_4 H_3 \rightarrow$	7.5 <p<75< td=""><td>$(k_{16}p2+(k_{16}p3-k_{16}p2)/(75-7.5)\times(p/1333.3-7.5))$</td><td></td></p<75<>	$(k_{16}p2+(k_{16}p3-k_{16}p2)/(75-7.5)\times(p/1333.3-7.5))$	
	C_4H_4	-		
$k_{16r}p2^8$	$C_4H_4 \rightarrow$	7.5 Torr	1.41E+65×T^(-14.94)×exp(-124900.0/1.987/T) +	1.72
	C_4H_3+H		2.19E+85×T^(-21.94)×exp(-125400.0/1.987/T)	
$k_{16r}p3^8$	$C_4H_4 \rightarrow C_4H_3 +$	75 Torr	$4.02E + \overline{69 \times T^{(-15.72)} \times exp(-133600.0/1.987/T)} +$	11
	Н		3.48E+60×T^(-13.79)×exp(-119600.0/1.987/T)	
k _{16r} ⁸	$C_4H_4 \rightarrow C_4H_3 +$	7.5 <p<75< td=""><td>$(k_{16r}p2+(k_{16r}p3-k_{16r}p2)/(75-7.5)\times(p/1333.3-7.5))$</td><td></td></p<75<>	$(k_{16r}p2+(k_{16r}p3-k_{16r}p2)/(75-7.5)\times(p/1333.3-7.5))$	
	Н			
k_{17}^{a}	$H + C_4H_4 \rightarrow H_2 +$	$+ C_4H_3$	4.47e8×T^1.88×exp(-14839/1.987/T)	$7.45 \cdot 10^{-12}$

k _{17r} ^b	$H_2 + C_4 H_3 \rightarrow H + C_4 H_4$		1.69e4×T^2.64×exp(-4559/1.987/T)	$2 \cdot 10^{-12}$
k_{18}^{19}	$C_2H_2 + C_4H_3 \rightarrow C_6H_5$		3.47e2×6.022e23×(T/298)^(-14.7)×exp(-	$3.7 \cdot 10^{-13}$
			130000/8.314/T)	
$k_{19}p1^{11}$	$H + C_4 H_4 \rightarrow i$ -	7.5 Torr	0.1091e56×T^(-13.094)×exp(-17169/1.987/T)	$9.1 \cdot 10^{-14}$
	C_4H_5			
$k_{19}p2^{11}$	$H + C_4 H_4 \rightarrow i$ -	29 Torr	0.88414e53×T^(-12.227)×exp(-17302/1.987/T)	$2.9 \cdot 10^{-13}$
	C_4H_5			
k ₁₉	$H + C_4 H_4 \rightarrow i$ -	7.5 <p<29< th=""><th>k₁₉p1+(k₁₉p2-</th><th></th></p<29<>	k ₁₉ p1+(k ₁₉ p2-	
	C ₄ H ₅		k ₁₉ p1)×log(p/7.5/1333.3)/log(29/7.4)	
$k_{19r}p1^{11}$	i -C ₄ H ₅ \rightarrow H +	7.5 Torr	0.5996e79×T^(-12.904)×exp(-	$2.06 \cdot 10^5$
	C_4H_4		61076/1.987/T)/6e23	
$k_{19r}p2^{11}$	i -C ₄ H ₅ \rightarrow H +	29 Torr	0.16992e78×T^(-12.251)×exp(-	$6.4 \cdot 10^5$
	C_4H_4		61446/1.987/T)/6e23	
k _{19r}	i -C ₄ H ₅ \rightarrow H +	7.5 <p<29< td=""><td>$(k_{19r}p1+(k_{19r}p2-k_{19r}p1)\times(P/1333.3-7.4)/21.6)$</td><td></td></p<29<>	$(k_{19r}p1+(k_{19r}p2-k_{19r}p1)\times(P/1333.3-7.4)/21.6)$	
	C_4H_4			
k_{20a}^{20}	$C_2H_2 + i-C_4H_5 \rightarrow$	$H + C_6H_6$	1.47e23×T^(-3.28)×exp(-24907/1.987/T)	$3 \cdot 10^{-15}$
k_{20b}^{20}	$C_2H_2 + i - C_4H_5 \rightarrow H + C_6H_6$		6.5e24×T^(-3.44)×exp(-20319/1.987/T)	$1.7 \cdot 10^{-13}$
	(F)	0 0		

Note: a. k_{17} is taken to be the same as k_{10} for $C_6H_6 + H \rightarrow C_6H_5 + H_2$. b. k_{17r} is taken to be the same as k_{10r} for $C_6H_5 + H_2 \rightarrow C_6H_6 + H$.

S14

Table S8. Boundary conditions for equations (5).

Inlet to SiC tube	Molar fraction of C _i (C ₁ =0.05, C ₃ =0.0258, all other
	C _i =0)
Outlet from SiC tube	Convective flux
Axis of SiC tube	Symmetry $\frac{\partial c_i}{\partial r} = 0$ for all y
Wall of SiC surface	insulation

Diffusion coefficients D_i are presented in Table S9. These values were taken from References S4 and S5 for diffusion in air ambient gas. A simplified correction of these values was made for He ambient gas.

Table S9. Diffusion coefficients D_i.

D ₁	(-0.06609+3.4744e-04×T+3.9244e-	diffusion C ₆ H ₅ NO
	07)×750×1333.3/p×((1+107/4)/(1+107/29))^0.5	like for C ₆ H ₅ NO ₂
D ₂	(-0.07583+4.3076e-4×T+4.6043e-	C_6H_5 like for
	7×T^2)×750×1333.3/p×((1+77/4)/(1+77/29))^0.5	C_6H_6
D ₃	(-0.09144+5.29e-4×T+5.44e-	C_4H_4
	7×T^2)×750×1333.3/p×((1+52/4)/(1+52/29))^0.5	
D_4	(-0.13184+8.3257e-4×T+7.64e-	C_2H_2
	7×T^2)×750×1333.3/p×((1+26/4)/(1+26/29))^0.5	
D ₅	(-0.04311+2.5699e-4×T+4.185e-	$C_{10}H_8$ (P1,
	7×T^2)×750×1333.3/p×((1+106/4)/(1+106/29))^0.5	naphthalene)
D ₆	(-0.04311+2.5699e-4×T+4.185e-	C ₁₀ H ₈ (P2)
	7×T^2)×750×1333.3/p×((1+106/4)/(1+106/29))^0.5	
D ₇	(-0.04311+2.5699e-4×T+4.185e-	C ₁₀ H ₈ (P3)
	7×T^2)×750×1333.3/p×((1+106/4)/(1+106/29))^0.5	
D ₈	(-0.16301+1.6882e-3×T+2.27255e-	Н
	6×T^2)×750×1333.3/p×((1+1/4)/(1+1/29))^0.5	
D9	(-0.06739+3.5096e-4×T+4.027e-	C ₆ H ₅ CCH
	7×T^2)×750×1333.3/p×((1+102/4)/(1+102/29))^0.5	
D ₁₀	(-0.13184+8.3257e-4×T+7.64e-	C_2H_3 like for
	7×T^2)×750×1333.3/p×((1+27/4)/(1+27/29))^0.5	C_2H_2
D ₁₁	(-0.07583+4.3076e-4×T+4.6043e-	C_6H_6 (benzene)
	7×T^2)×750×1333.3/p×((1+78/4)/(1+78/29))^0.5	
D ₁₂	(-0.07583+4.3076e-4×T+4.6043e-	C_6H_6 (F, fulvene)
	7×T^2)×750×1333.3/p×((1+78/4)/(1+78/29))^0.5	
D ₁₃	(-074707+3.73626e-3×T+3.2442e-	H_2
	6×T^2)×750×1333.3/p×((1+2/4)/(1+2/29))^0.5	
D ₁₄	(-0.09443+7.8814e-4×T+1.0532e-	NO
	$7 \times T (1 + 20/4) / (1 + 20/4) / (1 + 20/20) / (0.5)$	
Die	$7 \times 1^{-2} \times 750 \times 1555.5 / p \times ((1+50/4)/(1+50/29))^{-0.5}$	
D 15	$(-0.11168+6.095e-4\times T+6.274e-$	C ₃ H ₃
D15	$\frac{7 \times 1^{-2} \times 750 \times 1333.3}{p \times ((1+30/4)/(1+30/29))^{\circ} 0.5}$ (-0.11168+6.095e-4×T+6.274e- 7×T^2)×750×1333.3/p×((1+39/4)/(1+39/29))^{\circ} 0.5	C ₃ H ₃
D ₁₅	$\begin{array}{c} (-0.11168+6.095e-4\times T+6.274e-\\ 7\times T^{2})\times 750\times 1333.3/p\times ((1+39/4)/(1+39/29))^{\circ} 0.5 \\ (-0.08285+4.71e-4\times T+4.9668e-\\ \end{array}$	C ₃ H ₃ c-C ₅ H ₅
D ₁₅	$\begin{array}{c} (-0.11168+6.095e-4\times T+6.274e-\\ 7\times T^{2})\times 750\times 1333.3/p\times ((1+39/4)/(1+39/29))^{\circ}0.5\\ (-0.08285+4.71e-4\times T+4.9668e-\\ 7\times T^{2})\times 750\times 1333.3/p\times ((1+65/4)/(1+65/29))^{\circ}0.5\\ \end{array}$	C ₃ H ₃ c-C ₅ H ₅
D ₁₅ D ₁₆ D ₁₇	$\begin{array}{c} (-0.11168+6.095e-4\times T+6.274e-\\ 7\times T^{2})\times 750\times 1333.3/p\times ((1+39/4)/(1+39/29))^{\circ}0.5\\ (-0.08285+4.71e-4\times T+4.9668e-\\ 7\times T^{2})\times 750\times 1333.3/p\times ((1+65/4)/(1+65/29))^{\circ}0.5\\ (-0.09144+5.29e-4\times T+5.44e-\\ \end{array}$	C ₃ H ₃ c-C ₅ H ₅ C ₄ H ₃ like for
D ₁₅ D ₁₆ D ₁₇	$\begin{array}{c} (-0.11168+6.095e-4\times T+6.274e-\\ 7\times T^{2})\times 750\times 1333.3/p\times ((1+39/4)/(1+39/29))^{\circ} 0.5 \\ (-0.08285+4.71e-4\times T+4.9668e-\\ 7\times T^{2})\times 750\times 1333.3/p\times ((1+65/4)/(1+65/29))^{\circ} 0.5 \\ (-0.09144+5.29e-4\times T+5.44e-\\ 7\times T^{2})\times 750\times 1333.3/p\times ((1+51/4)/(1+51/29))^{\circ} 0.5 \\ \end{array}$	$C_{3}H_{3}$ $c-C_{5}H_{5}$ $C_{4}H_{3} like for$ $C_{4}H_{4}$
D ₁₅ D ₁₆ D ₁₇ D18	$\begin{array}{c} (-0.11168+6.095e-4\times T+6.274e-\\ 7\times T^{2})\times 750\times 1333.3/p\times ((1+39/4)/(1+39/29))^{\circ}0.5\\ (-0.08285+4.71e-4\times T+4.9668e-\\ 7\times T^{2})\times 750\times 1333.3/p\times ((1+65/4)/(1+65/29))^{\circ}0.5\\ (-0.09144+5.29e-4\times T+5.44e-\\ 7\times T^{2})\times 750\times 1333.3/p\times ((1+51/4)/(1+51/29))^{\circ}0.5\\ (-0.08877+5.0649e-4\times T+5.2566e-\\ \end{array}$	$C_{3}H_{3}$ $c-C_{5}H_{5}$ $C_{4}H_{3} like for$ $C_{4}H_{4}$ $C_{4}H_{5}$

2.5. Calculated parameters

2.5.1. Temperature of solids

At the electric power of 65 W, a temperature of 1,600 K of SiC tube wall is established at the distance of 2.5 cm downstream from the entrance into the SiC tube. The temperature distribution in the solids is shown in Figure S4. This solution gave a temperature of the choke orifice of 475 K. The temperature of the inlet edge of the SiC tube was determined to be 610 K. This temperature was utilized as the boundary value for the heat transfer problem in the gas flow.

Figure S4. Temperature distribution in the microreactor.

2.5.2. Gas molar and mass flow rate

The gas flow rate is controlled by gas outflow through the choke orifice. The mass gas flow rate was determined according to the formula

$$M_g = \varphi \pi \left(\frac{d_0}{2}\right)^2 \sqrt{\gamma \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}} \frac{P_{st}}{\sqrt{R_g T_{st}}}}.$$
 (6)

Here γ is the adiabatic constant, $P_{st} = 300$ Torr is the gas stagnation pressure upstream choke orifice, d_0 is the diameter of the choke orifice, $R_g(erg/g/K) = 8.31 \cdot 10^7/(\text{molecular weight})$ is the gas constant per unity of the gas mass, T_{st} is the gas stagnation temperature, φ is a discharge coefficient – the efficient relative fraction of the orifice area where the gas velocity equals to the sonic velocity. For thin choke orifice, the discharge coefficient is in the range of $\varphi = 0.8 \div 0.9$. We have assumed $\varphi = 0.85$. Assuming $T_{st} = 475$ K, equation (6) gives the mass flow rate $M_g = 2.76 \times 10^{-4}$ g/s and the molar flow rate $M_m = 3.07 \times 10^{-4}$ mol/s.

2.5.3. Gas flow parameters

The calculated profiles of the axial gas temperature, velocity and pressure are shown in Figure S5. The gas dynamic parameters exhibit strong axial gradients. The strong cooling of the gas flow at the outlet is due to strong radiative cooling of the unheated edge of the SiC tube. At a very short distance of a few mm the gas velocity achieves the speed of the sound. The cross flow profiles of temperature and pressure are almost uniform. The cross flow profile of z-velocity is almost parabolic.

Figure S5. Gas dynamic parameters of the flow in the reactor.

2.5.4. Mole fractions at the exit of the reactor

The output mole "fraction" of a component C_i is calculated by integration

$$G_i = \int_0^{d/2} C_i \, Nv * 2\pi r / M_m \tag{7}$$

N, v, C_i are current number density, axial velocity, mole fraction., M_m is input total molar flow rate of all components (He + C₆H₅NO + C₄H₄). Equation (7) allows us to calculate ratios G_i/G_j for any i and j. For $C_1 = 0$ (no C₆H₅NO present) calculations gave the efficiency of C₄H₄ decomposition of C₃/C₃⁰ = 0.01, which is lower than the measured value of 0.05. The calculated rates of reaction 2 and reaction 7 are shown in Figure S6. Their comparison shows that the H + C₄H₄ \rightarrow C₂H₂ + C₂H₃ reaction (7) is the prevailing source of acetylene and therefore our simulation results in presence of C₆H₅NO appeared to be insensitive to the rate of unimolecular decomposition of C₄H₄.

Figure S6. Rate of reactions 2 and 7 with calculated molar fractions of major and minor products shown in Figure S7.

Figure S7. Profiles of the molar fraction of the minor products H, C_6H_6 (fulvene), C_3H_3 , and C_8H_6 (phenylacetylene).

2.5.5. Calculation of the gas residence time.

The gas residence time inside distance interval [z,z+L] in SiC tube is defined as:

$$t_{res} = \int_{z}^{z+L} dz \int_{0}^{d/2} \frac{2\pi r \rho dr}{M_g}$$

Here, d is the diameter of the microreactor. The calculations give the $t_{res} = 564 \ \mu s$ inside the SiC tube in the interval [0, 3.81 cm] and $t_{res}=300 \ \mu s$ inside interval [0,1 cm]. The axial residence time is defined as

$$t_{res}^a = \int_{z}^{z+L} \frac{dz}{u_a}$$

Here u_a is the axial gas velocity in the center of the tube. Because of near parabolic velocity profile one has approximately $t_{res}^a \approx 0.5 t_{res}$.

2.5.6. Additional details of the reaction mechanisms

The calculated ratios [P2]/[P1] and [P3]/[P1] of ~0.3 and ~2.5 are somewhat out the confidence intervals of the experimental values, 0.12-0.22 and 0.76-1.74, respectively. One of the possible reasons for this discrepancy is that the experimental conditions, in particular, the mass flow rate and SiC tube temperature distribution, are not fully well defined. Our analysis showed that a variation of the mass flow rate through the microreactor by factors 0.5 to 2 does not change the calculation results substantially. A decrease of the SiC heat conductivity by factors 5 to 8 resulted in a more uniform temperature distribution but has not lead to a substantial change of the [P3]/[P1] ratio. Much more significant is the influence of the rate constant values. The calculated rate constants k_3 , k_4 , and k_5 are expected to have a kinetic accuracy within a factor of 2. A simple decrease of the value of k_{3c} by a factor of 2 results in the calculated values [P3]/[P1] \approx 1 and [P2]/[P1] \approx 0.15. Thus, within the error bars of the theoretical calculations of the rate constants, the predicted relative yields of P1, P2, and P3 are in close agreement with the experimental data. The calculations showed that a substantial part (nearly 50%) of C₆H₅ radicals is consumed in the competitive reactions (R6), (R9), (R11), and (R12) producing benzene, fulvene, phenylacetylene, and propargyl. These reactions also consume hydrogen atoms needed for reactions (R4) and (R5).

The kinetic modeling results clearly demonstrate that naphthalene is produced predominantly via secondary reactions of hydrogen-assisted isomerization of the other $C_{10}H_8$ isomers, *trans*-1-phenylvinylacetylene (P2) and 4-phenylacetylene (P3). Naphthalene is the predominant product of the P2 + H reaction with a high rate constant of 1.1×10^{-10} cm³ molecule⁻¹ s⁻¹ close to the kinetic limit at 1,600 K and

30 Torr. Here, a hydrogen atom adds to the terminal acetylenic carbon atom of *trans*-1-phenylvinylacetylene producing intermediates [i8] or [i7] via low barriers of 10 and 5 kJmol⁻¹. Next, [i7] easily rearranges to [i8] by rotation around the single C-C bond in the side chain and [i10] features a facile 1,5-H migration to [i11], which in turn undergoes a fast six-member ring closure followed by hydrogen loss giving rise to naphthalene. For the P3 + H reaction, two channels producing $C_6H_5 + C_4H_4$ and P2 + H are competitive with the respective rate constants of 1.1×10^{-11} and 3.5×10^{-12} cm³ molecule⁻¹ s⁻¹, whereas the formation of naphthalene, 1.4×10^{-13} cm³ molecule⁻¹ s⁻¹, is minor. Therefore, a fraction of the P3 + H reaction flux, which does not restore the initial reactants, converts to P2 + H and P2 then undergoes a fast H-assisted isomerization to naphthalene P1.

The second most abundant product in the present experiment is phenylacetylene, which can be formed in the $C_6H_5 + C_2H_2$ reaction (R6). Acetylene can in principle originate from unimolecular decomposition of vinylacetylene in the reactor. However, our simulation shows that the $H + C_4H_4 \rightarrow C_2H_2 + C_2H_3$ reaction (R7) is the prevailing source of acetylene. The simulation results appeared to be insensitive to a decrease of the rate constant for the unimolecular decay reaction (R2), which may be even reduced to zero without observing a significant change. Therefore, the initial $C_6H_5 + C_4H_4$ reaction is essential for the formation of acetylene and then, eventually phenylacetylene, because it rapidly produces H atoms along with $C_{10}H_8$ products. H atoms then react with C_4H_4 forming acetylene. The kinetic mechanism also explains the appearance of the other minor products; here, vinyl radicals C_2H_3 originate from the H + C_4H_4 reaction, C_3H_3 is a minor product of H + C₆H₅, the $C_2H_2 + C_3H_3$ reaction (R14) produces cyclopentadienyl *c*-C₅H₅, benzene can be formed through the $C_6H_5 + H$ recombination or in the $C_4H_5 + C_2H_2$ reaction, where C_4H_5 in turn can be produced by H addition to C_4H_4 . The C_6H_6 isomers benzene and fulvene can interconvert to one another via H-assisted isomerization.

3. Photoionization efficiency (PIE) curves and fits of low molecular weight products

Figure S8. Experimental photoionization efficiency curves (PIE, black lines) recorded in the phenylvinylacetylene system for low molecular-weight products along with the experimental errors (gray area) and the reference PIE curves (blue, green and red lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. For the fit of m/z = 27, as it may be partially attributed to fragments from high molecular weight species, the fit is not as good as others in the higher energy range.

Species	Structure	m/z	Photoionization energy (eV)	
			Experimental	Ref. 21
C ₂ H ₃ (Vinyl radical)		27	8.20 ± 0.05	8.25
NO (Nitrogen monoxide)	⁺ NO ⁻	30	8.80 ± 0.05	8.85
C ₃ H ₃ (Propargyl radical)	<u> </u>	39	8.70 ± 0.05	8.67
C ₅ H ₅ (Cyclopentadienyl radical)		65	8.40 ± 0.05	8.41
C ₆ H ₆ (fulvene)		78	8.35 ± 0.05	8.36
C ₆ H ₆ (Benzene)		78	9.20 ± 0.05	9.24
C ₈ H ₆ (Phenylacetylene)		102	8.75 ± 0.05	8.82

Table S10. Photoionization information for low molecular weight products.

References

(1) Nguyen, T. H.; Morris, S. A.; Zheng, N. Intermolecular [3+2] Annulation of Cyclopropylanilines with Alkynes, Enynes, and Diynes via Visible Light Photocatalysis. *Adv. Synth. Catal.* **2014**, *356*, 2831-2837. (2) Cheng, J.-K.; Loh, T.-P. Copper- and Cobalt-Catalyzed Direct Coupling of sp3 α -Carbon of Alcohols with Alkenes and Hydroperoxides. *J. Am. Chem. Soc.* **2015**, *137*, 42-45.

(3) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. *The Properties of Gases and Liquids, Third Edition*; McGraw-Hill; 1977.

(4) Yaws, C. L. Transport properties of chemicals and hydrocarbons: viscosity, thermal conductivity, and diffusivity of Cl to Cl00 organics and Ac to Zr inorganic; William Andrew; 2009.

(5) Yaws, C. L. Transport properties of chemicals and hydrocarbons: Including C1 to C100 Organics and Ac to Zr Inorganics. William Andrew; 2014.

(6) Park, J.; Dyakov, I. V.; Mebel, A. M.; Lin, M. C. Experimental and Theoretical Studies of the Unimolecular Decomposition of Nitrosobenzene: High-Pressure Rate Constants and the C– N Bond Strength. J. Phys. Chem. A **1997**, *101*, 6043-6047.

(7) Horn, C.; Frank, P.; Tranter, R. S.; Schaugg, J.; Grotheer, H.-H.; Just, T. Direct Measurement of the Reaction Pair $C_6H_5NO \rightarrow C_6H_5+ NO$ by a Combined Shock Tube and Flow Reactor Approach. *Proc. Combust. Inst.* **1996**, *26*, 575-582.

(8) Zador, J.; Fellows, M. D.; Miller, J. A. Initiation Reactions in Acetylene Pyrolysis. J. Phys. Chem. A **2017**, *121*, 4203-4217.

(9) Mebel, A. M.; Landera, A.; Kaiser, R. I. Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames. *J. Phys. Chem. A* **2017**, *121*, 901-926.

(10) Mebel, A. M.; Georgievskii, Y.; Jasper, A. W.; Klippenstein, S. J. Temperature-and Pressure-Dependent Rate Coefficients for the HACA Pathways from Benzene to Naphthalene. *Proc. Combust. Inst.* **2017**, *36*, 919-926.

(11) Miller, J. A.; Klippenstein, S. J.; Robertson, S. H. A Theoretical Analysis of the Reaction Between Vinyl and Acetylene: Quantum Chemistry and Solution of the Master Equation. *J. Phys. Chem. A* **2000**, *104*, 7525-7536.

(12) Knyazev, V. D.; Slagle, I. R. Experimental and Theoretical Study of The $C_2H_3 \rightleftharpoons H + C_2H_2$ Reaction. Tunneling and the Shape of Falloff Curves. *J. Phys. Chem.* **1996**, *100*, 16899-16911.

(13) Bauich, D.; Cobos, C.; Cox, C.; Esser, C.; Frank, P.; Just, T.; Kerr, J.; Pilling, M.; Troe, J.; Walker, R. Evaluated kinetic data for combustion modelling. *J. Phys. Chem. Ref. Data* **1992**, *21*, 411-429.

(14) Harding, L. B.; Georgievskii, Y.; Klippenstein, S. J. Predictive Theory for Hydrogen Atom-

Hydrocarbon Radical Association Kinetics. J. Phys. Chem. A 2005, 109, 4646-4656.

(15) Miller, J. A.; Klippenstein, S. J. The Recombination of Propargyl Radicals and Other Reactions on a C_6H_6 Potential. *J. Phys. Chem. A* **2003**, *107*, 7783-7799.

(16) Semenikhin, A. S.; Savchenkova, A. S.; Chechet, I. V.; Matveev, S. G.; Liu, Z.; Frenklach, M.; Mebel, A. M. Rate Constants for H Abstraction from Benzo(a)pyrene and Chrysene: A Theoretical Study. *Phys. Chem. Chem. Phys.* **2017**, *19*, 25401-25413.

(17) Jasper, A. W.; Hansen, N. Hydrogen-Assisted Isomerizations of Fulvene to Benzene and of Larger Cyclic Aromatic Hydrocarbons. *Proc. Combust. Inst.* **2013**, *34*, 279-287.

(18) da Silva, G. Mystery of 1-Vinylpropargyl Formation from Acetylene Addition to the Propargyl Radical: An Open-and-Shut Case. J. Phys. Chem. A **2017**, *121*, 2086-2095.

(19) Madden, L. K.; Moskaleva, L. V.; Kristyan, S.; Lin, M. C. Ab Initio MO Study of the Unimolecular Decomposition of the Phenyl Radical. *J. Phys. Chem. A* **1997**, *101*, 6790-6797.

(20) Senosiain, J. P.; Miller, J. A. The Reaction of *n*-and *i*-C₄H₅ Radicals with Acetylene. *J. Phys. Chem. A* **2007**, *111*, 3740-3747.

(21) Photonionization Cross Section Database (Version 2.0), National Synchrotron Radiation Laboratory, Hefei, China, <u>http://flame.nsrl.ustc.edu.cn/database/</u> (2017).