Supporting Information

Accessing the Nitromethane (CH₃NO₂) Potential Energy Surface in Methanol (CH₃OH)–Nitrogen Monoxide (NO) Ices Exposed to Ionizing Radiation: An FTIR and PI-ReTOF-MS Investigation

Sándor Góbi^{1,2}, Parker B. Crandall¹, Pavlo Maksyutenko^{1,3}, Marko Förstel^{1,4}, Ralf I. Kaiser^{1,*}

 ¹ Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
 W.M. Keck Laboratory in Astrochemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
 ² Present address: Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
 ³ Present address: Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138, USA
 ⁴ Present address: Berlin Institute of Technology, IOAP, Hardenbergstrasse 36, 10623 Berlin, Germany ralfk@hawaii.edu

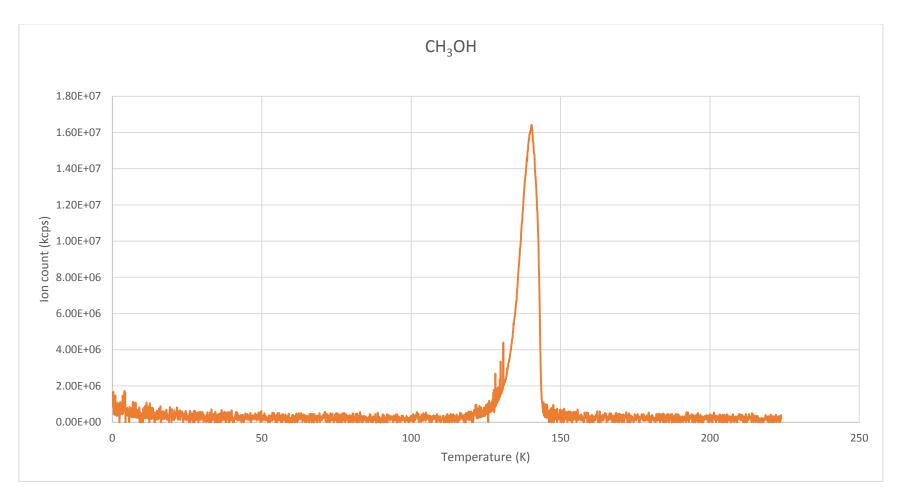


Figure S1. Calibration EI-QMS TPD curve of 1 fringe of neat CH₃OH ice deposited on a silver substrate at 5.5 K.

Physical quantity	Value
Refractive index	1.3284
Thickness (nm)	240
Density (g cm $^{-3}$)	1.02
Mass (g)	$2.43 imes 10^{-5}$
Molar mass (g mol^{-1})	32.04
Amount (mol)	$7.59 imes10^{-7}$
Avogadro's number	6.02×10^{23}
Number of molecules	$4.57 imes 10^{17}$
Integrated EI-QMS signal (kcps)	1.36×10^{9}
Conversion factor	$3.37 imes 10^8$

Table S1. Physical quantities connected to the CH₃OH ice.

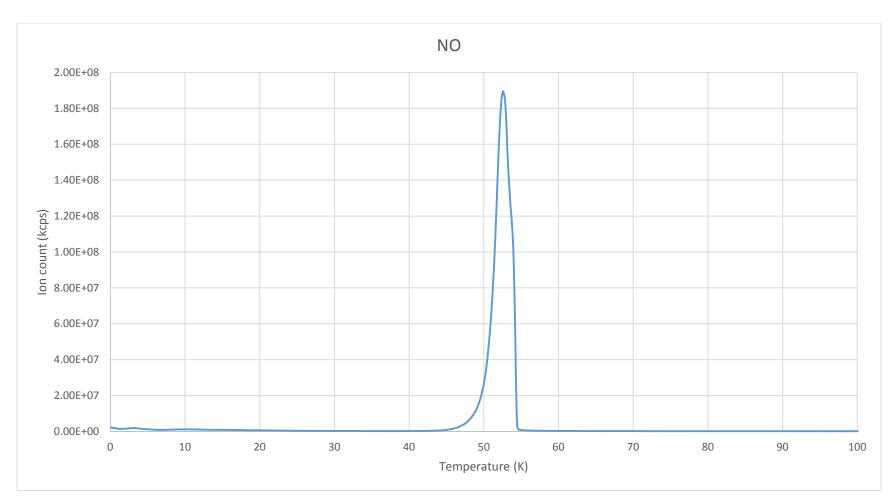
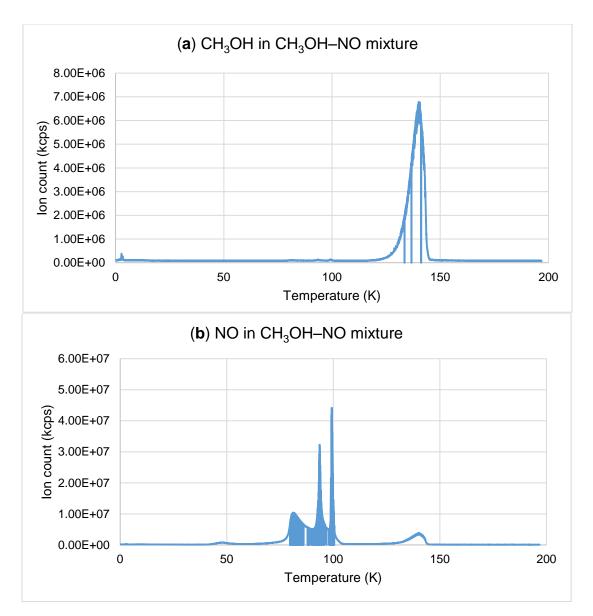



Figure S2. Calibration EI-QMS TPD curve of 1 fringe of neat NO ice deposited on a silver substrate at 5.5 K.

Physical quantity	Value
Refractive index	1.22
Thickness (nm)	260
Density (g cm ^{-3})	1.25
Mass (g)	$3.25 imes10^{-5}$
Molar mass (g mol^{-1})	30.01
Amount (mol)	$1.08 imes10^{-6}$
Avogadro's number	6.02×10^{23}
Number of molecules	$6.52 imes10^{17}$
Integrated EI-QMS signal (kcps)	$5.52 imes 10^9$
Conversion factor	$1.18 imes 10^8$

Table S2. Physical quantities connected to theNO ice.

Figure S3. Calibration EI-QMS TPD curve of 2 fringes of (**a**) CH₃OH, (**b**) NO in a CH₃OH–NO ice mixture deposited on a silver substrate at 5.5 K.

Physical quantity	Value		
Refractive index	1.16 ^a		
Thickness (nm)	540 ^b / 540 ^c		
Average density $(g \text{ cm}^{-3})^a$	1.12		
Mass (g)	2.85×10^{-5} $^{\rm d}$ / 3.23×10^{-5} $^{\rm e}$		
Average molar mass $(g \text{ mol}^{-1})^a$	30.93		
Amount of substances (mol)	$8.90 imes 10^{-7}$ d / $1.08 imes 10^{-6}$ e		
Avogadro's number	6.02×10^{23}		
Number of molecules	$5.36 imes 10^{17}$ d / $6.48 imes 10^{17}$ e		
Integrated EI-QMS signal (kcps)	$1.59 imes 10^{9}$ d / $5.49 imes 10^{9}$ e		
Ratio ^b	$1.2 \pm 0.1 : 1.0$		
^a Calculated by using the equations shown in Figure S7.			
^b Calculated from calibrated EI-QMS signals.			

Table S3. Physical quantities connected to the CH_3OH –NO ice mixture.

^c Calculated from laser interferometry.

^d CH₃OH

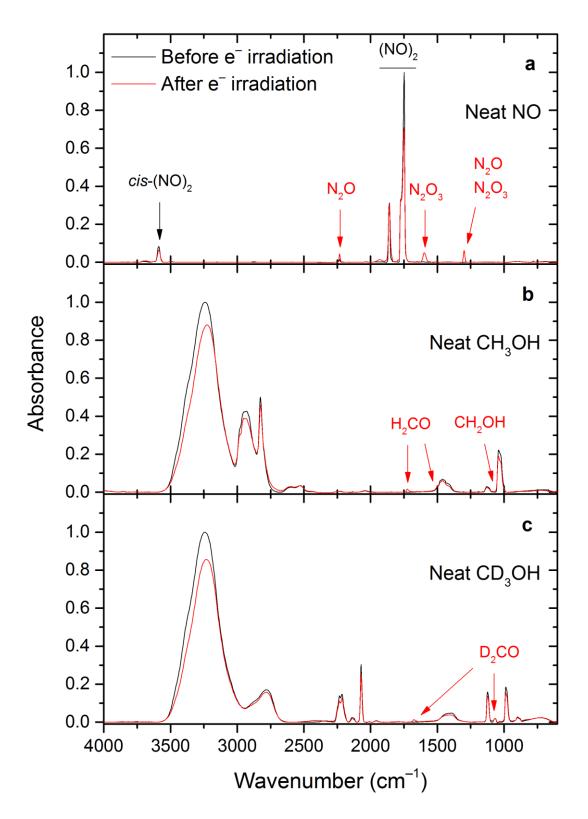
^e NO

Figure S4. Equations used to calculate the refractive index of the CH₃OH–NO ice mixture.¹

Ice	NO	CH ₃ OH	CD ₃ OH
Average molar mass of the ice, M (g mol ⁻¹)	30.01	32.04	35.06
Average density of the ice, ρ (g cm ⁻³) ^a	1.22	1.02	1.12
Irradiated area, $A (cm^2)$	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1
Angle of incidence, $\theta(^{\circ})$	70	70	70
Irradiation time, t (s)	3600 ± 2	3600 ± 2	3600 ± 2
Applied electron current, $I(nA)$	15 ± 2	15 ± 2	15 ± 2
Total number of electrons generated ($\times 10^{14}$)	3.4 ± 0.3	3.4 ± 0.3	3.4 ± 0.3
Initial kinetic energy of the electrons, E_{init} (keV)	5.0	5.0	5.0
Average kinetic energy of backscattered electrons, E_{bs} (keV) ^b	3.4 ± 0.1	3.2 ± 0.1	3.2 ± 0.1
Fraction of backscattered electrons, $f_{\rm bs}(\%)^{\rm b}$	39 ± 2	33 ± 2	33 ± 2
Average kinetic energy of transmitted electrons, E_{trans} (keV) ^b	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Fraction of transmitted electrons, f_{trans} (%) ^b	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Simulated average penetration depth, $l (nm)^{b}$	270 ± 10	260 ± 10	240 ± 10
Total number of molecules exposed ($\times 10^{17}$)	6.5 ± 0.7	5.0 ± 0.5	4.5 ± 0.5
Dose per molecule, D (eV)	1.9 ± 0.3	2.7 ± 0.4	2.9 ± 0.4
a^{a} As the density values for the deuterated species is not available, it was assumed that the same number of			

Table S4. Summary of the electron irradiation experiments of neat NO, CH₃OH, and CD₃OH ices at 5.5 K.

^{*a*} As the density values for the deuterated species is not available, it was assumed that the same number of molecules occupies equal volume for both the CH₃OH and CD₃OH samples.


^b Values from CASINO simulations.

VUV generation details

10.20 eV (121.6 nm) VUV light was generated by resonant four-wave mixing ($\omega_{VUV} = 2\omega_1 - \omega_2$) in 1.5 × 10⁻⁴ Torr of krypton (99.999%, Specialty Gases of America) as the nonlinear medium. In order to do this, 606.948 nm (2.04 eV) light was produced by the first dye laser (Sirah Lasertechnik, Cobra-Stretch) using a mixture of Rhodamine 640 and Rhodamine 610 dyes (Exciton). This was pumped by the second harmonic of the fundamental of an Nd:YAG laser (532 nm, 2.33 eV, Spectra Physics, PRO-270-30) and tripling the dye laser output frequency using β-BaB₂O₄ (BBO) crystals (44° and 77°). This resulted in ω_1 to be 6.13 eV (202.3 nm), which were mixed with $\omega_2 = 2.05$ eV (604.80 nm) light that was generated by the second dye laser (Sirah Lasertechnik, PrecisionScan) using a mixture of Rhodamine 640 and Rhodamine 610 dyes. The second dye laser was pumped by the second harmonic of the fundamental of the second Nd:YAG laser.

Krypton was utilized as well to obtain VUV photons with an energy of 9.80 eV (126.5 nm). For this, mixing $\omega_1 = 6.13$ eV (202.3 nm) photons with $\omega_2 = 2.46$ eV (504.00 nm) photons generated by the second dye laser using Coumarin 503 (Exciton) dye was done.

Xenon was necessary as a nonlinear medium to generate the 9.15 eV (135.50 nm) photoionization energy, which needed the third harmonic of the first Nd:YAG laser (355 nm, 3.49 eV). This pumped the first dye laser using Coumarin 450 dye to produce 445.132 nm (2.79 eV), which was frequency doubled to obtain $\omega_1 = 5.57$ eV (222.66 nm). Then it was mixed with $\omega_2 = 1.99$ eV (623.04 nm) VUV photons generated by using a mixture of Rhodamine 640 and Rhodamine 610 in the second dye laser pumped by the second harmonic of the fundamental of the second Nd:YAG laser. The generated VUV light was then separated by the LiF biconvex lens and directed to the main chamber.

Figure S5. FTIR spectra of neat (**a**) NO, (**b**) CH₃OH, and (**c**) CD₃OH ices before (black) and after irradiation (red).

Wavenum Before irrad.	ber (cm ⁻¹) ^b After irrad.	Change upon irrad. ^c	Vibr. mode	Assignment ^d	Reference
3588m	3588m	_	$v_1 + v_5$	cis-(NO) ₂	2
2232w	2232m	+	v_1	<i>v</i> N≡N (N ₂ O)	3
1860s	1860m	_	V_1	<i>v</i> _s N=O (<i>cis</i> -(NO) ₂)	
10008	1847sh	+	v_1	$\nu N=O(N_2O_3)$	
1775sh, 1749vs	1775s, 1749vs,b	—	V_5	v _{as} N=O (cis-(NO) ₂)	4, 5
_	1597m	+	V_2	$v_{\rm as} {\rm NO}_2 \left({\rm N}_2 {\rm O}_3 \right)$	
_	1299m	+	V_3	$v_{\rm s} {\rm NO}_2 \left({\rm N}_2 {\rm O}_3 \right)$	
—	1287sh	+	V_3	$\nu N-O(N_2O)$	3
780vw	780w	+	V_4	$\beta \mathrm{NO}_2 \left(\mathbf{N_2O_3} \right)$	4, 5

Table S5. Assignment of the FTIR data of the neat NO ice electron irradiation experiment.^a

^a Radiolysis products are highlighted in bold.

^b vs, very strong; s, strong; m, medium; w, weak; vw, very weak; sh, shoulder; b, broad; –, no signal

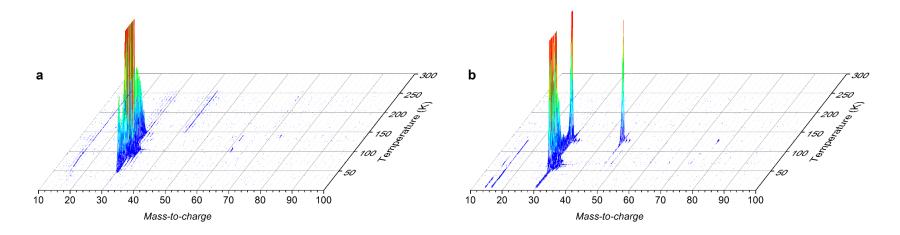
^c –/+, decrease/increase of signal; b, broadening upon irradiation

^d ν : stretching, β : bending, s: symmetric, as: antisymmetric vibrations

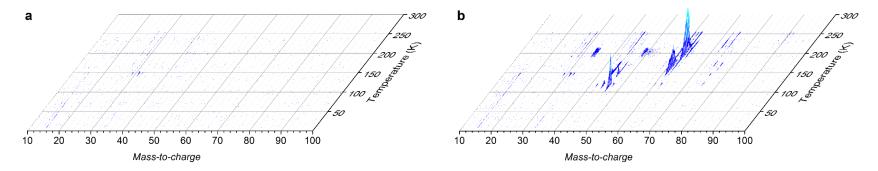
Wavenum Before irrad.	ber (cm ⁻¹) ^c After irrad.	Change upon irrad. ^d	Vibr. mode	Assignment ^e	Reference
3377sh, 3230vs	3377sh, 3230vs	-, b	ν_1	<i>v</i> О–Н (CD ₃ OH)	6,7
2877sh, 2783s,b	2877sh, 2783s,b	—, b	$2v_6$	2 <i>β</i> О–Н (CD ₃ OH)	7
2233m, 2214m	2233m, 2214m	_	V2, V9	vasCD ₃ (CD ₃ OH)	6,7
2140w	2140w	_	$2v_{10}$	$2\beta_{as}CD_3(CD_3OH)$	7
2070s	2070s	_	V_3	$v_{\rm s}{\rm CD}_3$ (CD ₃ OH)	6,7
2009vw	2009vw	_	$2v_4$	$2\beta_{as}CD_3(CD_3OH)$	7
1958vw	1958vw	_	$2v_8$	2vC-O (CD ₃ OH)	7
_	1676vw	+	V_2	vC=O (D ₂ CO)	8
1414m,b	1414m,b	-, b	V_6	β OH (CD ₃ OH)	6,7
_	1220vw,b	+	V_6	vС-О (С D ₂ О Н)	8,9
1123s	1123m	—, b	V_5	$\beta_{s}CD_{3}(CD_{3}OH)$	6,7
_	1099sh	+	V_3	$\beta CD_2 (D_2 CO)$	8
1067w	1067w	—			
1033vw,	1032vw	+ ^f , b	<i>V</i> ₄ , <i>V</i> ₁₀	$\beta_{as}CD_3(CD_3OH)$	6,7
1028vw	097.				67
987s	987s	_	V_8	ν C-O (CD ₃ OH)	6,7
-	949sh	+	V_6	$\omega \text{CD}_2 \left(\mathbf{D}_2 \mathbf{CO} \right)$	8
898w, 880sh	898w, 880sh	—	<i>V</i> ₇ , <i>V</i> ₁₁	ρCD ₃ (CD ₃ OH)	6,7

Table S6. Assignment of the FTIR data of the neat CD₃OH ice electron irradiation experiment.^{a,b}

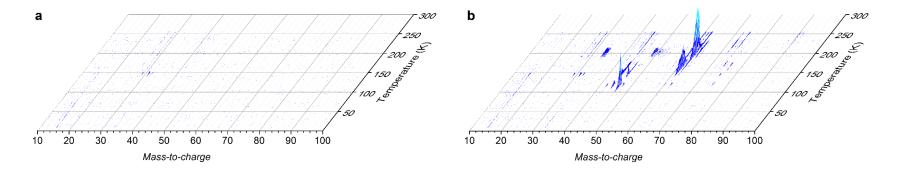
^a For the assignment of electron irradiated CH₃OH ices, see reference 10.

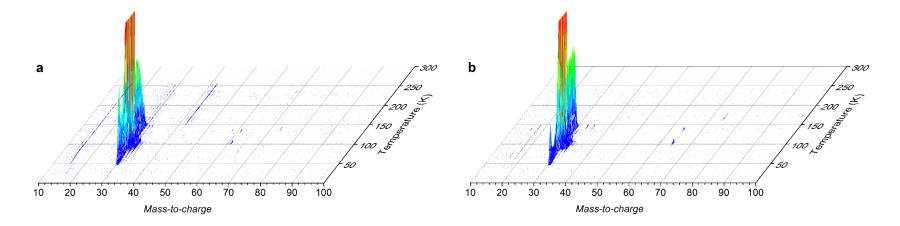

^b Radiolysis products are highlighted in bold.

^c vs, very strong; s, strong; m, medium; w, weak; vw, very weak; sh, shoulder; b, broad; –, no signal


^d –/+, decrease/increase of signal; b, broadening upon irradiation

^e ν: stretching, β : bending, ρ : rocking, ω : wagging, s: symmetric, as: antisymmetric vibrations


^f Increase in signal strength due to overlapping with the ν_6 vibrational mode of the forming CD₃H product molecule.


Figure S6. Three-dimensional visualization of the PI-ReTOF-MS data of the (**a**) blank and (**b**) irradiated neat NO ice samples at the photoionization energy of 10.49eV.

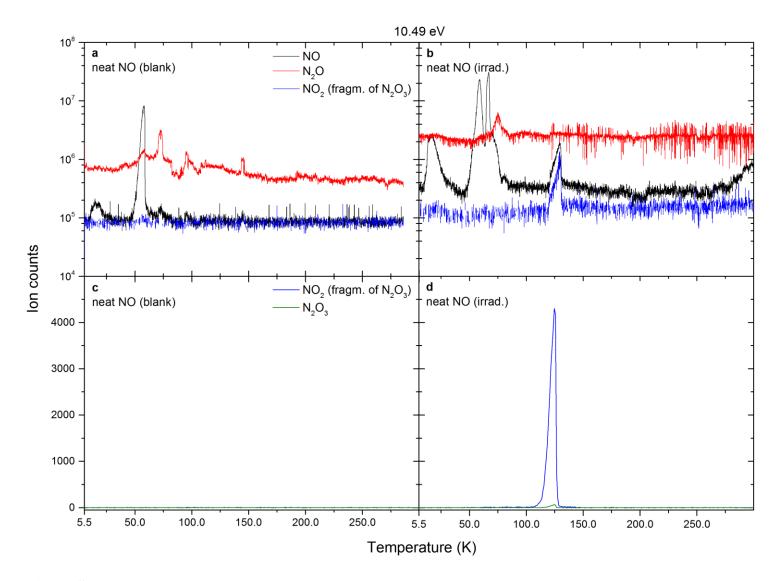

Figure S7. Three-dimensional visualization of the PI-ReTOF-MS data of the (**a**) blank and (**b**) irradiated neat CH_3OH ice samples at the photoionization energy of 10.49eV.

Figure S8. Three-dimensional visualization of the PI-ReTOF-MS data of the (a) blank and (b) irradiated neat CD_3OH ice samples at the photoionization energy of 10.49eV.

Figure S9. Three-dimensional visualization of the PI-ReTOF-MS data of the blank (**a**) CD₃OH–NO and (**b**) CD₃OH–NO ice samples at the photoionization energy of 10.49eV.

Figure S10. EI-QMS data of selected species subliming from the (**a**) blank and (**b**) irradiated neat NO ices. Data in (**c**) and (**d**) show the respective PI-ReTOF-MS profiles at the photoionization energy of 10.49eV.

Table S7. Signals detected by the PI-ReTOF-MS technique in the irradiated neat NO ice at the photoionization energy of 10.49 eV.

m/z.	Species	Fragment of	$T_{\text{sublim.}}$ (K)	IE (eV)	References
76	N_2O_3	—	127	N/A	_
46	NO_2	N_2O_3	127	N/A	—
		N_2O_{3}	127,	N/A,	_
30	$^{14}N^{16}O^{a}$	N ₂ O (co-subl.),	75,	N/A,	_
50	NU	(NO) ₂ (co-subl.?),	66,	N/A,	_
		—	59	9.2643 ± 0.0002	11

^a Isotopologues at m/z = 31, 32, 33 can be observed as well.

Table S8. Signals detected by the PI-ReTOF-MS technique in the irradiated neat CD₃OH ice at the photoionization energy of 10.49 eV.^a

m/z,	Species	$T_{\text{sublim.}}$ (K)	IE (eV)	References
96	CD ₃ OCD ₂ OCDO	256	?	_
95	CD ₃ OC(O)CD ₂ OH	255	10.42	12
94	HOCD ₂ CD(OH)CDO HOCD ₂ C(O)CD ₂ OH	257	? ?	-
84	$\begin{array}{c} CD_3OC_3D_7\\ C_2D_5OC_2D_5\end{array}$	174	? ?	_
83	$CD_{3}(CD_{2})_{3}OH$ $CD_{3}CD_{2}CD(OH)CD_{3}$ $(CD_{3})_{2}CDCD_{2}OH$ $(CD_{3})_{3}COH$ $CD_{3}O(CD_{2})OH$ $C_{2}D_{5}OCD_{2}OH$	171	$\begin{array}{c} 9.99 \pm 0.05 \\ 9.88 \pm 0.03 \\ 10.02 \pm 0.05 \\ 9.90 \pm 0.03 \\ ? \\ ? \end{array}$	13
80	$C_{3}D_{7}CDO$ $(CD_{3})_{2}CDCDO$ $C_{2}D_{5}C(O)CD_{3}$	221, 244	9.83 9.72 9.52	14 14 15
	CD ₃ C(O)OCD ₃ CD ₃ (CD) ₂ CD ₂ OH	175 219	10.25 9.13	16 14
79	CD ₃ C(O)CD ₂ OH CD ₃ CD(OH)CDO HO(CD ₂)CDO C ₂ D ₅ COOH	177, 245	10.0 ± 0.1 ? ? 10.51	17 - - 15
76	CD ₃ C(O)CDO ODCCD ₂ CDO	223	9.6 ?	12
75	$ODCC(OH)CD_2$ $HO(CD)_2CDO$	229	??	—
68	$\begin{array}{c} C_3 D_4 O_2{}^b \\ C_2 D_5 OC D_3 \end{array}$	256 122, 148, 171, 207	$?\\9.72\pm0.07$	- 18

67	C ₃ D ₇ OH (CD ₃) ₂ CDOH	171, 207	$\begin{array}{c} 10.22 \pm 0.04 \\ 10.12 \pm 0.03 \end{array}$	19
66	HO(CD ₂) ₂ OH	171, 206	10.16	Error! Reference source not found.
65	$C_2D_4HO_2^{c}$	170, 205, 248	?	_
64	C ₂ D ₅ CDO CD ₃ COCD ₃	207, 248	$\begin{array}{c} 9.96 \\ 9.695 \pm 0.006^{d} \end{array}$	15 21
	$C_2D_4O_2?^c, C_4D_8^e$	170	?	_
	HOCD ₂ CDO	205, 223	10.2	12
63	CD ₂ =CDCD ₂ OH C ₃ D ₅ HO isomers	174, 186	9.67 ± 0.05 ?	22
62	HO(CD) ₂ OH	208	9.62 ± 0.04	23
52	CD ₃ OCD ₃	120, 148	10.025 ± 0.025	24
51	C ₂ D ₅ OH	121, 151	10.47 ± 0.02	19
48	CD ₃ CDO	121, 149	10.22 ± 0.01	25
47	CD ₂ =CDOH	120, 151, 171, 209, 244	9.33 ± 0.01	26
44	CD ₂ C=O	120, 190	9.6130 ± 0.0003^{d}	27
For the signals detected in the irredicted CH OH ice, see reference 12				

^a For the signals detected in the irradiated CH₃OH ice, see reference 12.

^b Fragment of an C₃D₆O₃ isomer.

^c Fragment of D₅-methoxymethanol (CD₃OCD₂OH).

^d Photoionization energies of the deuterated species, in all other cases the *IE*s of the non-deuterated counterparts are shown due to lack of available data.

^e Fragment of C₄H₁₀O isomer.

Table S9. Mass balance of the neat NO ice as well as that of the irradiation products determined from their experimental IR Decay/Growth Curves.

Process	Decay product	# of molecules produced / decomposed during irradiation
$NO \rightarrow X$		$(5.1 \pm 1.4) \times 10^{17}$
Fraction of NO degraded		$76 \pm 14\%$
	N_2O_3	$(1.5 \pm 0.6) \times 10^{16}$
# of products in sample	N_2O	$(3.5 \pm 0.1) \times 10^{15}$
after irradiation	Nitrogen balance ^a	$7 \pm 5\%$
	Oxygen balance ^a	$9\pm 6\%$

^a Fraction of nitrogen or oxygen atoms originating from NO destruction that are needed for radiolysis product formation

Process	Decay product	# of molecules produced /	
		decomposed during irradiation	
$CH_3OH \rightarrow X$		$(4.6 \pm 0.9) \times 10^{17}$	
Fraction of CH ₃ OH degraded		$92 \pm 4\%$	
	H_2CO	$(6.8 \pm 2.1) \times 10^{15}$	
	CH_4	$(2.3 \pm 0.1) \times 10^{15}$	
# of products in sample after	CH ₂ OH	$(2.1 \pm 0.1) \times 10^{15}$	
irradiation	CO	$(1.3 \pm 0.1) \times 10^{15}$	
madiation	HCO	$(1.3 \pm 0.2) \times 10^{14}$	
	Carbon balance ^a	$3 \pm 1\%$	
	Oxygen balance ^a	$2 \pm 1\%$	
^a Francisco e francisco e a constructione france OULOUL de constructione de la france			

Table S10. Mass balance of the neat CH₃OH ice as well as that of the irradiation products determined from their experimental IR Decay/Growth Curves.

^a Fraction of carbon or oxygen atoms originating from CH₃OH destruction that are needed for radiolysis product formation.

Table S11. Mass balance of the neat CD₃OH ice as well as that of the irradiation products determined from their experimental IR Decay/Growth Curves.

Process	Decay product	# of molecules produced / decomposed during irradiation
$CD_3OH \rightarrow X$		$(4.1 \pm 0.9) \times 10^{17}$
Fraction of CH ₃ OH degraded		$89\pm5\%$
	$D_2 CO^a$	$(7.7 \pm 3.7) \times 10^{15}$
# of products in sample after	CD ₂ OH	$(2.4 \pm 0.4) imes 10^{14}$
irradiation	Carbon balance ^b	$2 \pm 1\%$
	Oxygen balance ^b	$2 \pm 1\%$
	1, 1, 1	

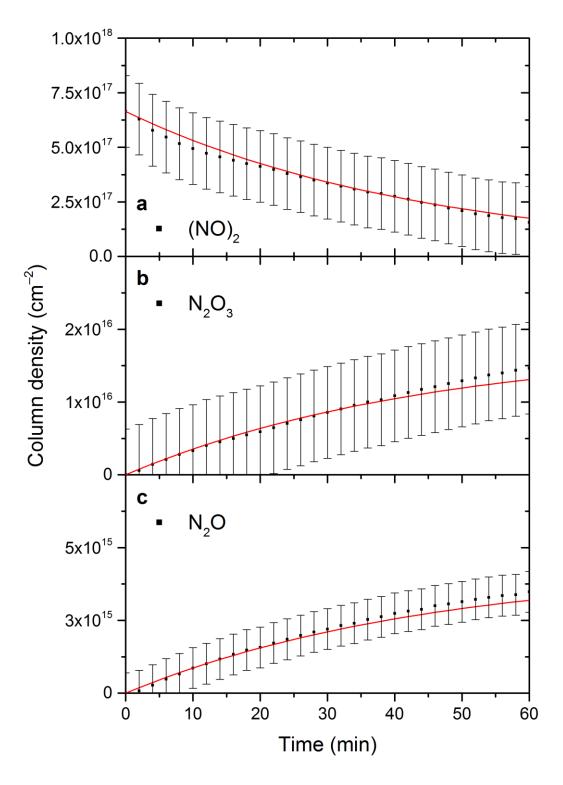
^a Absorption coefficients were assumed to be the same as for the normal isotopologue.

 $^{\rm b}$ Fraction of carbon or oxygen atoms originating from CD₃OH destruction that are needed for radiolysis product formation.

Process	Decay product	# of molecules produced /
		decomposed during irradiation
$CD_3OH \rightarrow X$		$(2.4 \pm 0.5) imes 10^{17}$
Fraction of CD ₃ OH degraded		$87 \pm 5\%$
$NO \rightarrow X$		$(2.2\pm0.4) imes 10^{17}$
Fraction of NO degraded		$71 \pm 1\%$
	<i>c</i> -CD ₃ ONO	$(9.0\pm0.1) imes10^{16}$
	<i>t</i> -CD ₃ ONO ^b	$(8.5\pm0.1) imes10^{16}$
	N_2O	$(7.0 \pm 0.6) imes 10^{15}$
	CD ₃ H	$(5.1 \pm 0.1) imes 10^{15}$
	D_2CO	$(3.2 \pm 0.1) \times 10^{15}$
# of products in sample after	N_2O_3	$(1.5 \pm 0.1) imes 10^{15}$
irradiation	CD ₂ OH	$(8.4\pm0.7) imes10^{14}$
	CO^{c}	$(8.1 \pm 0.3) imes 10^{14}$
	CO_2	$(5.0 \pm 0.3) \times 10^{13}$
	Carbon balance ^d	$82 \pm 19\%$
	Oxygen balance ^d	$81 \pm 10\%$
	Nitrogen balance ^d	$42 \pm 6\%$

Table 12. Mass balance of the CD₃OH–NO system as well as that of the irradiation products determined from their experimental IR Decay/Growth Curves.^a

^a Absorption coefficients – where absent – were assumed to be the same as for the normal isotopologues.


^b The absorption coefficient was assumed to be the same as for the *cis* isomer.

 $^{\rm c}$ The column density of CO was assumed to be the same as for the CD₃OH–NO mixture sample.

^d Fraction of carbon atoms originating from CD₃OH or oxygen/nitrogen atoms from CD₃OH/NO destruction that are needed for radiolysis product formation.

Table S13. Reactions used for the kinetic fitting of the neat NO system along with the determined rate constants (k_i , in s⁻¹).

no.	Equation	Rate constant	Value
E1	$(NO)_2 + (NO)_2 \rightarrow N_2O_3 + N_2O_3$	k_1	$(2.4 \pm 0.5) \times 10^{-6}$
E2	$(NO)_2 + (NO)_2 \rightarrow N_2O_3 + X$	k_2	$(7.5 \pm 0.7) imes 10^{-6}$
E3	$(NO)_2 \rightarrow 2NO$	k_3	$(3.5 \pm 0.2) \times 10^{-4}$

Figure S11. Experimental decay curves of the (**a**) $(NO)_2$ as well as the growth curves of (**b**) N_2O_3 and (**c**) N_2O , respectively. The theoretical decay/growth curves are represented by the lines overlaid in red.

References

- 1. Westley, M. S.; Baratta, G. A.; Baragiola R. A. Density and Index of Refraction of Water Ice Films Vapor Deposited at Low Temperatures. *J. Chem. Phys.* **1998**, *108*, 3321–3326.
- 2. Krim, L.; Lacome, N. The NO Dimer, ¹⁴N and ¹⁵N Isotopomers Isolated in Argon Matrix: A Near-, Mid-, and Far-Infrared Study. *J. Phys. Chem. A* **1998**, *102*, 2289–2296.
- Jamieson, C. S.; Bennett, C. J.; Mebel, A. M.; Kaiser, R. I. Investigating the Mechanism for the Formation of Nitrous Oxide [N₂O(X¹Σ⁺)] in Extraterrestrial Ices. *Astrophys. J.* 2005, 624, 436–447.
- Fateley, W. G.; Bent, H. A.; Crawford, B., Jr. Infrared Spectra of the Frozen Oxides of Nitrogen. J. Chem. Phys. 1959, 31, 204–217.
- Stirling, A.; Pápai, I.; Mink, J.; Salahub, D. R. Density Functional Study of Nitrogen-Oxides. J. Chem. Phys. 1994, 100, 2910–2923.
- Shimanouchi, T. Tables of Molecular Vibrational Frequencies. Consolidated Volume I, Natl. Stand. Ref. Data Ser. (U. S., Natl. Bur. Stand.) 1972, 39, 1–164.
- Falk, M.; Whalley, E. Infrared Spectra of Methanol and Deuterated Methanols in Gas, Liquid, and Solid Phases. J. Chem. Phys. 1961, 34, 1554–1568.
- Saenko, E. V.; Feldman, V. I. Radiation-Induced Transformations of Methanol Molecules in Low-Temperature Solids: A Matrix Isolation Study. *Phys. Chem. Chem. Phys.* 2016, *18*, 32503–32513.
- Lee, Yu-F.; Kong, L.-J.; Lee, Y.-P. Infrared Absorption of CH₃OSO and CD₃OSO Radicals Produced upon Photolysis of CH₃OS(O)Cl and CD₃OS(O)Cl in p-H₂ Matrices. *J. Chem. Phys.* 2012, *136*, 124510.
- 10. Bennett, C. J.; Chen, S. H.; Sun, B. J.; Chang, A. H. H.; Kaiser, R. I. Mechanistical Studies on the Irradiation of Methanol in Extraterrestrial Ices. *Astrophys. J.* **2007**, *660*, 1588–1608.
- 11. Ebata, T.; Anezaki, Y.; Fujii, M.; Mikami, N.; Ito, M. High Rydberg States of NO Studied by Two-Color Multiphoton Spectroscopy. *J. Phys. Chem.* **1983**, *87*, 4773–4776.
- Maity, S.; Kaiser, R. I.; Jones, B. M. Formation of Complex Organic Molecules in Methanol and Methanol–Carbon Monoxide Ice Exposed to Ionizing Radiation – A Combined FTIR and Reflectron Time-of-Flight Mass Spectrometry Study. *Phys. Chem. Chem. Phys.* 2015, 17, 3081–3114.

- Shao, J. D.; Baer, T.; Lewis, D. K. Dissociation Dynamics of Energy-selected Ion-Dipole Complexes. 2. Butyl Alcohol Ions. J. Phys. Chem. 1988, 92, 5123–5128.
- Traeger, J. C.; McAdoo, D. J. Decomposition Thresholds and Associated Translational Energy Releases for Eight C₄H₈O⁺ Isomers. *Int. J. Mass Spectrom. Ion Processes* 1986, 68, 35–48.
- 15. Traeger, J. C. Heat of Formation for the Propanoyl Cation by Photoionization Mass Spectrometry. *Org. Mass Spectrom.* **1985**, *20*, 223–227.
- 16. Traeger, J. C.; McLoughlin, R. G.; Nicholson, A. J. C. Heat of Formation for Acetyl Cation in the Gas Phase. *J. Am. Chem. Soc.* **1982**, *104*, 5318–5322.
- Arakawa, R. Mass Spectral Study of Ionized-Hydroxyacetone Dissociation. *Bull. Chem.* Soc. Jpn. 1991, 64, 1022–1024
- Bowen, R. D.; Maccoll, A. Low Energy, Low Temperature Mass Spectra 2—Low Energy, Low Temperature Mass Spectra of some Small Saturated Alcohols and Ethers. *Org. Mass Spectrom.* 1984, *19*, 379–384.
- Refaey, K. M. A.; Chupka, W. A. Photoionization of the Lower Aliphatic Alcohols with Mass Analysis. J. Chem. Phys. 1968, 48, 5205–5219.
- H. Y. Afeefy, J. F. Liebman and S. E. Stein, in *Neutral Thermochemical Data*, ed. P. J. Linstrom and W. G. Mallard, National Institute of Standards and Technology, Gaithersburg, MD, 2013, vol. 69.
- Trott, W. M.; Blais, N. C.; Walters, E. A. Molecular Beam Photoionization Study of Acetone and Acetone-d₆. *J. Chem. Phys.* **1978**, *69*, 3150–3158.
- 22. Watanabe, K.; Nakayama, T.; Mottl, J. Ionization Potentials of Some Molecules. *J. Quant. Spectrosc. Radiat. Transfer* **1962**, *2*, 369–382.
- Tureček, F.; Havlas, Z. Energy Barriers to the Diels-Alder Cycloadditions and Cycloreversions of Cation-Radicals in the Gas Phase. J. Chem. Soc., Perkin Trans. 2 1986, 1011–1014.
- Butler, J. J.; Holland, D. M. P.; Parr, A. C.; Stockbauer, R. A Threshold Photoelectron-Photoion Coincidence Spectrometric Study of Dimethyl Ether (CH₃OCH₃). *Int. J. Mass Spectrom. Ion Processes* 1984, 58, 1–14.

- Kräßig, R.; Reinke, D.; Baumgärtel, H. Photo-reaktionen Kleiner Organischer Moleküle II. Die Photoionenspektren der Isomeren Propylen-Cyclopropan und Acetaldehyd-Äthylenoxyd. *Ber. Bunsen-Ges.* 1974, 78, 425–436.
- Ruscic, B.; Berkowitz, J. The Heats of Formation of Some C₂H₅O⁺ Isomers, Relevant Bond Energies in Ethanol and PA(CH₃CHO). *J. Chem. Phys.* **1994**, *101*, 10936–10946.
- 27. Niu, B.; Bai, Y.; Shirley, D. A. High Resolution Photoelectron Spectroscopy and Femtosecond Intramolecular Dynamics of H₂CCO⁺ and D₂CCO⁺. J. Chem. Phys. 1993, 99, 2520–2532.