Supporting Information

A Spectroscopic Investigation of the Primary Reaction Intermediates in the Oxidation of Levitated Droplets of Energetic Ionic Liquids

Stephen J. Brotton,¹ Michael Lucas,¹ Steven D. Chambreau,² Ghanshyam L. Vaghjiani,³ Jiang Yu,⁴ Scott L. Anderson,⁴ and Ralf I. Kaiser¹

¹ Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822
² ERC Inc., Edwards Air Force Base, CA 93524.
³ In-Space Propulsion Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRS, Edwards Air Force Base, CA 93524.
⁴ University of Utah, Department of Chemistry, Salt Lake City, UT 84112.

Experimental Methods

A single droplet of the ionic liquid was levitated in an ultrasonic levitator enclosed within a pressure-compatible process chamber. The apparatus has been discussed in detail elsewhere.¹⁻² The chamber was evacuated and then filled to 880 Torr with argon (Airgas, 99.9999%) or a gas mixture of 1.3% nitrogen dioxide (Aldrich, \geq 99.5%) and 98.7% argon. The 1-methyl-4-amino-1,2,4-triazolium dicyanamide ([MAT][DCA]) was synthesized as discussed in reference 3. The [MAT][DCA]-capped, hydrogen-terminated boron nanoparticles were produced by high-energy ball-milling boron powder in a hydrogen atmosphere, resulting in hydrogen-terminated nanoparticles, and then capping with [MAT][DCA] to generate air-stable, unoxidized particles, as described in reference 4. A piezoelectric transducer oscillating at 58 kHz generates ultrasonic sound waves that reflect multiple times between the transducer and a concave-shaped reflector to create the standing wave that levitates the droplet. The [MAT][DCA] or [MAT][DCA] with boron nanoparticles was injected into the center of the levitator using a syringe and needle to form a droplet with a diameter of typically 1 mm. The chemical modifications of the levitated droplets were monitored in situ by Raman^{1-2, 5} and UV-visible (StellarNet Inc., Silver-Nova) spectrometers. The Raman transitions are excited by the 532 nm line of a diode-pumped, Qswitched Nd:YAG laser. The Raman-shifted photons, which were backscattered from the droplet, are focused by a lens into a HoloSpec f/1.8 holographic imaging spectrograph equipped with a PI-Max 2 ICCD camera from Princeton Instruments. In the UV-visible spectrometer, the output from a high-brightness UV-visible source is transmitted via a fiber-optic feedthrough on a 35 CF flange to a reflectance probe located inside of the vacuum chamber. The backscattered light is collected by a read fiber, exits the chamber via a different connector on the same 35 CF fiber-optic feedthrough, and finally enters a UV-visible spectrometer that covers the 190 nm to 1100 nm spectral range. The Fourier-transform infrared (FTIR) spectra were taken before and after the reaction using an attenuated total reflection (ATR) accessory with a Thermo Scientific Nicolet 6700 FTIR spectrometer.¹

Computational Methods

A variant of the quantum-mechanical continuum solvation model SMD,⁶ known as the generic ionic liquid (SMD-GIL) model,⁷ was employed to calculate the vibrational frequencies of the reactants and products in the condensed phase of the ionic liquid. The SMD-GIL calculations were performed using Gaussian 09⁸ with an M06/6-31+G(d,p) basis set. In detail, the SMD-GIL solvent descriptor input parameters used to simulate [MAT][DCA] as the solvent are: e = 11.50, n = 1.4300, $\gamma = 61.24$, $\Sigma \alpha_2^{H} = 0.229$, $\Sigma \beta_2^{H} = 0.265$, $\varphi = 0.2308$, and $\psi = 0.0000$.⁷ After calculating the frequencies, a scaling factor is needed for agreement between experiment and theory. For the M06 level of theory used here, all the vibrational frequencies presented have therefore been scaled by the factor of 0.989.

To interpret the UV-visible spectra in the 200 - 1100 nm wavelength range, we investigated the electronic transitions of each relevant species. Time-dependent density functional theory (TD-DFT) at the M06/6-31 + G(d,p) level was therefore applied to [MAT][DCA], NO₂, and [MAT][DCA] bonded with NO₂ as shown in Figure 1. The calculations were performed using Gaussian09 for the first 50 electronic transitions of each species including singlets and triplets states. The electronic transitions were assigned, for example to $\pi \to \pi^*$ or $\pi^* \to \pi^*$, by visual inspection of the molecular orbitals involved in each transition.

Figure S1. Raman spectra of [MAT][DCA] with hydrogen-capped, boron nanoparticles levitated in argon.

Table S1. Assignments for the observed peaks in the infrared spectra of [MAT][DCA] and [MAT][DCA] doped with hydrogen-capped boron nanoparticles by comparison with GIL theoretical values for [MAT][DCA], the measured values in ^a Ref. [9], ^b Ref. [10], ^c Ref. [11] for the [DCA]⁻ anion, and ^d Ref. [12] for the B-H bond

number	vibrational mode	theoretical and measured reference wavenumbers (cm ⁻¹)	measured wavenumbers [MAT][DCA] (cm ⁻¹)	measured wavenumbers boron-doped [MAT][DCA] (cm ⁻¹)
ν_1	[DCA] ⁻ wag	31		
ν_2	[DCA] ⁻ rock	45		
v ₃	[DCA] ⁻ rock	54		
ν_4	[DCA] ⁻ rock	75		
ν ₅	[DCA] ⁻ rock	94		
v ₆	$N(CN)_2$ bend $[DCA]^-$	140		
ν_7	CH ₃ rock	173		
v ₈	CH ₃ rotation	196		
v 9	out-of-plane symmetric NH ₂ , CH ₃ wag	231		
v_{10}	out-of-plane symmetric NH ₂ , CH ₃ wag 2	290		
v ₁₁	NH ₂ rock	302		
v ₁₂	NH ₂ rotation	335		
v ₁₃	antisymmetric NH ₂ , CH ₃ in-plane wag	450		
v_{14}	in-plane antisymmetric N-C≡N bend of [DCA]	514		
<i>v</i> ₂ *	in-plane antisymmetric N-C≡N bend of [DCA] ⁻	517 ^{a)}	511	512
<i>v</i> ₃ *	out-of-plane antisymmetric N-C≡N bend of [DCA]	530 ^{a)}	524	524
v_4^*	out-of-plane symmetric N-C≡N bend of [DCA] ⁻	543 ^{a)}	540	540
v ₁₅	out-of-plane symmetric N-C≡N bend of [DCA]	541		
v_{16}	out-of-plane antisymmetric N-C=N bend of $[DCA]^{-}$	554		
<i>v</i> ₁₇	symmetric N-NH ₂ and N-CH ₃ stretch	613	601	601
<i>v</i> ₁₈	N(4) umbrella	620	613	613
v ₁₉	in-plane symmetric N-C-N bend in [DCA] ⁻	651		
<i>v</i> ₂₀	H ₃ CN(1)-N(2)CH torsion	659		
v_{5}^{*}	in-plane C-N-C bend of [DCA] ⁻	666"	657	657
v_{21}	antisymmetric ring mode with N-CH ₃ and N-NH ₂ stretch	747	737	737
<i>v</i> ₂₂	C(3)H, C(5)H antisymmetric out-of-plane wag	871	880	878
<i>v</i> ₂₃	C(3)H, C(5)H symmetric out-of-plane wag	892		
v_6^*	C-N-C symmetric stretch of [DCA] ⁻	904 ^{b)}	905	905
v_{24}	C-N-C symmetric stretch in [DCA]	936		
V ₂₅	NH ₂ rock	958		
V ₂₆	N(1)-N(2) stretch, C(3)H in-plane wag	993	978	978

<i>v</i> ₂₇	ring C-N-C symmetric stretch, C(5) wag and CH ₃ rock	1059	1071	1071
<i>v</i> ₂₈	N-C-N ring bend, CH ₃ rock	1085	1091	1091
V ₂₉	CH ₃ rock	1120		
V ₃₀	C(5)H wag, N(1)-CH ₃ stretch	1168	1171	1170
<i>v</i> ₃₁	C(3)H, C(5)H antisymmetric in-plane wag	1197	1212	1213
V ₃₂	ring NN stretch	1287		
v ₇ *	C-N-C antisymmetric stretch of [DCA] ⁻	1309 ^{b)}	1310	1310
V ₃₃	ring C-N-C antisymmetric stretch, NH ₂ rock	1354		
V ₃₄	ring C-N-C antisymmetric stretch, NH ₂ rock 2	1382		
V ₃₅	CH ₃ umbrella	1396		
V ₃₆	C-N-C antisymmetric stretch in [DCA] ⁻	1403		
<i>v</i> ₃₇	CH ₂ wag	1405	1407	1407
V ₃₈	CH ₂ wag 2	1418	1439	1439
V39	N(2)-C(3) and N(4)-C(5) symmetric stretch	1455	1455	1456
v_{40}	N(2)-C(3) and N(4)-C(5) antisymmetric stretch	1566	1535	1535
<i>v</i> ₄₁	N(1)-C(5) stretch, N-NH ₂ and N-CH ₃ antisymmetric stretch	1588	1571	1570
<i>v</i> ₄₂	NH ₂ scissor	1638	1630	1630
<i>v</i> ₈ *	$C \equiv N$ antisymmetric stretch of $[DCA]^{-1}$	2133 ^{b)}	2126	2126
<i>v</i> ₉ *	$C \equiv N$ symmetric stretch of $[DCA]^{-1}$	2192 ^{b)}	2197	2197
$v_6^{*}+v_7^{*}$	[DCA] ⁻ combination mode	2227 ^{c)}	2237	2237
v_{43}	[DCA] antisymmetric stretch	2232		
v_{44}	[DCA] ⁻ symmetric stretch	2275		
<i>v</i> (B-H)	B-H stretch	2565-2480 ^{d)}	-	2494
V45	CH ₃ symmetric stretch	3038	2971	2971
V46	CH ₃ antisymmetric stretch	3148	3022	3021
V47	CH ₃ antisymmetric stretch 2	3162	3080	3079
V48	C(5)H stretch	3234	3142	3141
V49	C(3)H stretch	3242	3227	3218
V50	symmetric NH stretch	3317	3294	3291
<i>v</i> ₅₁	antisymmetric NH stretch	3527	3507	3505

Table S2. Assignments for the observed peaks in the Raman spectrum of [MAT][DCA] by comparison with GIL theoretical values for [MAT][DCA], and the measured values in ^a Ref. [9], ^b Ref. [10], ^c Ref. [11] for the [DCA]⁻ anion.

number	vibrational mode	theoretical and measured reference wavenumbers (cm ⁻¹)	measured wavenumbers [MAT][DCA] (cm ⁻¹)
ν_1	[DCA] ⁻ wag	31	
v_2	[DCA] ⁻ rock	45	
v ₃	[DCA] ⁻ rock	54	
ν_4	[DCA] ⁻ rock	75	
v ₅	[DCA] ⁻ rock	94	
ν_6	$N(CN)_2$ bend $[DCA]^-$	140	
v_7	CH ₃ rock	173	
ν_8	CH ₃ rotation	196	
v ₉	out-of-plane symmetric NH ₂ , CH ₃ wag	231	
v_{10}	out-of-plane symmetric NH ₂ , CH ₃ wag 2	290	
v ₁₁	NH ₂ rock	302	
v_{12}	NH ₂ rotation	335	
<i>v</i> ₁₃	antisymmetric NH ₂ , CH ₃ in-plane wag	450	446
ν_{14}	in-plane antisymmetric N-C≡N bend of [DCA] ⁻	514	
<i>v</i> ₃ *	out-of-plane symmetric N-C≡N bend of [DCA] ⁻	530 ^{a)}	532
v_{15}	out-of-plane symmetric N-C=N bend of $[DCA]^{-}$	541	
ν_{16}	out-of-plane antisymmetric N-C≡N bend of [DCA] ⁻	554	
<i>v</i> ₁₇	symmetric N-NH ₂ and N-CH ₃ stretch	613	606
ν_{18}	N(4) umbrella	620	
v_{19}	in-plane symmetric N-C-N bend in [DCA] ⁻	651	
v_{20}	H ₃ CN(1)-N(2)CH torsion	659	655
<i>v</i> ₅ *	in-plane C-N-C bend of [DCA] ⁻	666 ^{b)}	000
<i>v</i> ₂₁	antisymmetric ring mode with N-CH ₃ and N-NH ₂ stretch	747	729
<i>v</i> ₂₂	C(3)H, C(5)H antisymmetric out-of-plane wag	871	863
$v_{23} v_6^*$	C(3)H, C(5)H symmetric out-of-plane wag C-N-C symmetric stretch of [DCA] ⁻	892 904 ^{b)}	897
V ₂₄	C-N-C symmetric stretch in [DCA]	936	
V25	NH ₂ rock	958	971
V ₂₆	N(1)-N(2) stretch, C(3)H in-plane wag	993	1038
V ₂₇	ring C-N-C symmetric stretch, C(5) wag and CH ₃	1059	1059

	rock		
V ₂₈	N-C-N ring bend, CH ₃ rock	1085	1077
V ₂₉	CH ₃ rock	1120	
V ₃₀	C(5)H wag, N(1)-CH ₃ stretch	1168	1163
<i>v</i> ₃₁	C(3)H, C(5)H antisymmetric in-plane wag	1197	1206
V ₃₂	ring NN stretch	1287	
v ₇ *	C-N-C antisymmetric stretch of [DCA] ⁻	1309 ^{b)}	1315
V ₃₃	ring C-N-C antisymmetric stretch, NH ₂ rock	1354	
v ₃₄	ring C-N-C antisymmetric stretch, NH ₂ rock 2	1382	
V ₃₅	CH ₃ umbrella	1396	
V ₃₆	C-N-C antisymmetric stretch in [DCA] ⁻	1403	
V ₃₇	CH ₃ umbrella	1405	1402
V ₃₈	CH ₂ wag 2	1418	
V ₃₉	N(2)-C(3) and N(4)-C(5) symmetric stretch	1455	1448
V40	N(2)-C(3) and N(4)-C(5) antisymmetric stretch	1566	1530
<i>v</i> ₄₁	N(1)-C(5) stretch, N-NH ₂ and N-CH ₃ antisymmetric stretch	1588	1566
v_{42}	NH ₂ scissor	1638	1624
v_8 *	$C \equiv N$ antisymmetric stretch of $[DCA]^{-}$	2133 ^{b)}	2132
V9*	$C \equiv N$ symmetric stretch of $[DCA]^-$	2192 ^{b)}	2191
$v_6^{*+}v_7^{*-}$	[DCA] ⁻ combination mode	2227 ^{c)}	2236
v_{43}	[DCA] ⁻ antisymmetric stretch	2232	
ν_{44}	[DCA] symmetric stretch	2275	
$2v_{37}$	antisymmetric mixed mode	2804	2803
V45	CH ₃ symmetric stretch	3038	2954
v_{46}	CH ₃ antisymmetric stretch	3148	3029
V47	CH ₃ antisymmetric stretch 2	3162	3109
v_{48} v_{49}	C(5)H stretch C(3)H stretch	3234 3242	3160
V ₅₀	symmetric NH stretch	3317	3319

number	vibrational mode	theoretical
number		wavenumbers (cm ⁻¹)
ν ₁	NO ₂ rock	11
v ₂	anion rock 1	32
v ₃	anion rock 2	44
ν_4	N=C=N wag	65
V ₅	Cation rock	69
ν_6	CH ₃ to NO ₂ stretch	94
ν_7	C-N-CN bend of anion	98
ν_8	O ₂ NN-CNCN torsion	138
v ₉	CH_3 rotation	159
v_{10}	CH ₃ rotation and C-N-CN bend	177
v_{11}	CH ₃ rotation and N(4)C(3)-N(2)CH ₃ torsion	215
v_{12}	C=N-NO ₂ in-plane bend	224
v_{13}	NH ₂ wag	291
ν_{14}	NH_2 wag and N-N-CH ₃ in plane bend	307
v_{15}	C=N=C=N out-of-plane torsion + NH ₂ rotation	332
ν_{16}	O ₂ N-NC torsion in anion	354
ν_{17}	$O_2NN=C=N$ in-plane bend + N-C=N bend	432
ν_{18}	antisymmetric NH ₂ and CH ₃ in plane wag	456
V ₁₉	N-C≡N out-of-plane bend	570
v_{20}	NO_2 rock + N=C=N in-plane bend + C(3)H bend	608
v ₂₁	N-NH ₂ + N-CH ₃ symmetric in-plane bend	611
v ₂₂	C(3) + C(5) out-of-plane symmetric bend	618
v ₂₃	N-C≡N in-plane bend	653
V ₂₄	N(4) + C(5) out-of-plane bend	661
V ₂₅	N-N=C bend + $C(5)H$ in-plane wag	745
V ₂₆	N-NO ₂ umbrella	779
V ₂₇	N=C=N-NO ₂ bend + N-NO ₂ umbrella	784
V ₂₈	C(3)H + C(5)H out-of-plane antisymmetric wag	876
V ₂₉	C(3)H + C(5)H out-of-plane symmetric wag	896
v ₃₀	N-NO ₂ symmetric stretch	946
v ₃₁	N-NO ₂ symmetric stretch + NH ₂ wag	982
v ₃₂	ring NN stretch + NH ₂ wag	996
V ₃₃	N-CN stretch	1029
v_{34}	C(3)H + C(5)H in-plane wag	1054
V ₃₅	CH ₃ in-plane rocking	1085

Table S3. Theoretical wavenumbers and vibrational mode assignments for [MAT][DCA] bonded with nitrogen dioxide (Figure 1) calculated using the SMD-GIL model at the M06/6-31+G(d,p) level of theory.

V ₃₆	CH ₃ out-of-plane rocking	1125
V ₃₇	C(3)H in-plane wag	1161
V ₃₈	C(5)H in-plane wag	1201
V ₃₉	C=N-NO ₂ stretch	1271
V ₄₀	ring NN stretch + CH_2 wag + $C(3)H + C(5)H$ in- plane symmetric wag	1288
v_{41}	N=C=N-NO ₂ symmetric stretch + NH ₂ rock	1351
V ₄₂	ring CNC antisymmetric stretch	1355
V ₄₃	NH ₂ rock	1370
v_{44}	CH ₃ umbrella	1398
v_{45}	ring breathing + CH ₃ antisymmetric wag 1	1429
v_{46}	ring breathing + CH ₃ antisymmetric wag 2	1405
v_{47}	ring breathing + CH ₃ antisymmetric wag 3	1420
V ₄₈	ring CNNC antisymmetric stretch + C(3)H in- plane wag	1456
V ₄₉	O=N=O antisymmetric stretch	1568
V ₅₀	ring CNNC symmetric stretch + C(3)H in-plane wag	1576
v ₅₁	NH ₂ bend	1585
V ₅₂	O ₂ N-NC=NCN stretch	1632
V ₅₃	N-C=N antisymmetric stretch	2256
V ₅₄	CH ₃ symmetric stretch	3032
V ₅₅	C(5)H stretch	3145
V ₅₆	CH ₂ antisymmetric stretch	3147
V ₅₇	CH ₃ antisymmetric stretch	3152
V ₅₈	$C(3) + NH_2$ antisymmetric stretch	3254
V59	$C(3) + NH_2$ symmetric stretch	3372
v_{60}	NH ₂ antisymmetric stretch	3532

Table S4. Cartesian coordinates of the atoms in [MAT][DCA] and [MAT][DCA] reacted with nitrogen dioxide calculated at the M06/6-31+G(d,p) level of theory.

structure	coordinates (Å)		
[MAT][DCA]	С	0.944 0.020 -0.821	
	С	2.064 -0.583 0.940	
	Ν	1.357 1.077 -0.152	
	Η	0.364 0.012 -1.736	
↓ ↓ <u>[</u>	Η	2.530 -1.234 1.667	
	С	1.162 2.484 -0.467	
	Η	0.605 2.555 -1.402	
- `s	Η	0.593 2.950 0.340	
	Η	2.142 2.955 -0.570	
	Ν	2.058 0.721 0.958	
	Ν	1.388 -1.056 -0.146	
	Ν	1.215 -2.407 -0.436	
	Η	0.209 -2.611 -0.360	
	Η	1.537 -2.574 -1.388	
	Ν	-2.959 -0.119 0.288	
	С	-2.254 -1.196 0.134	
	С	-2.444 1.069 0.144	
	Ν	-1.688 -2.222 0.009	
	Ν	-2.057 2.175 0.031	
$[MAT][DCA] + NO_2$	С	1.277 -0.354 0.345	
	С	3.410 -0.356 -0.085	
	Ν	1.605 -1.404 -0.380	
	Η	0.273 -0.090 0.671	
3, 3	Η	4.440 -0.028 -0.087	
	С	0.731 -2.448 -0.893	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Н	-0.268 -2.298 -0.476	
	Н	0.706 -2.384 -1.983	
	H	1.127 -3.417 -0.581	
	N	2.937 -1.427 -0.660	
	N	2.416 0.333 0.547	
	N	2.606 1.535 1.224	
	H	1.982 2.230 0.798	
	H	2.356 1.399 2.202	
	N	-1.914 2.295 -0.741	
		-0.636 2.554 -0.576	
		-2.430 1.172 -0.397	
	N	0.495 2.840 -0.454	
	N	-1.883 0.098 0.116	
	N	-2.749 -0.932 0.407	
	0	-3.958 -0.833 0.228	
	O	-2.208 -1.941 0.857	

## References

1. Brotton, S. J.; Kaiser, R. I., Novel High-Temperature and Pressure-Compatible Ultrasonic Levitator Apparatus Coupled to Raman and Fourier Transform Infrared Spectrometers. *Rev. Sci. Instrum.* **2013**, *84*, 055114.

2. Brotton, S. J.; Kaiser, R. I., In Situ Raman Spectroscopic Study of Gypsum (CaSO₄  $\cdot$  2H₂O) and Epsomite (MgSO₄  $\cdot$  7H₂O) Dehydration Utilizing an Ultrasonic Levitator. *J. Phys. Chem. Lett.* **2013**, *4*, 669-673.

3. Hawkins, T. W.; Schneider, S.; Drake, G. W.; Vaghjiani, G.; Chambreau, S. Hypergolic Fuels Containing Fuel and Oxidizer for Liquid Rockets or Propellants. U.S. Patent 8034202B1, 2011.

4. Perez, J. P. L.; Yu, J.; Sheppard, A. J.; Chambreau, S. D.; Vaghjiani, G. L.; Anderson, S. L., Binding of Alkenes and Ionic Liquids to B-H-Functionalized Boron Nanoparticles: Creation of Particles with Controlled Dispersibility and Minimal Surface Oxidation. *ACS Appl. Mater. Interfaces* **2015**, *7*, 9991-10003.

5. Bennett, C. J.; Brotton, S. J.; Jones, B. M.; Misra, A. K.; Sharma, S. K.; Kaiser, R. I., High-Sensitivity Raman Spectrometer To Study Pristine and Irradiated Interstellar Ice Analogs. *Anal. Chem.* **2013**, *85*, 5659-5665.

6. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *Journal of Physical Chemistry B* **2009**, *113*, 6378-6396.

7. Bernales, V. S.; Marenich, A. V.; Contreras, R.; Cramer, C. J.; Truhlar, D. G., Quantum Mechanical Continuum Solvation Models for Ionic Liquids. *J. Phys. Chem. B* **2012**, *116*, 9122-9129.

8. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., et al., Gaussian 09, Revision A.02. *Gaussian, Inc.: Wallingford, CT, 2009.* 

9. Reckeweg, O.; DiSalvo, F. J.; Schulz, A.; Blaschkowski, B.; Jagiella, S.; Schleid, T., Synthesis, Crystal Structure, and Vibrational Spectra of the Anhydrous Lithium Dicyanamide Li N(CN)₂. *Z. Anorg.Allg. Chem.* **2014**, *640*, 851-855.

10. Paschoal, V. H.; Faria, L. F. O.; Ribeiro, M. C. C., Vibrational Spectroscopy of Ionic Liquids. *Chem. Rev.* **2017**, *117*, 7053-7112.

11. Kiefer, J.; Noack, K.; Penna, T. C.; Ribeiro, M. C. C.; Weber, H.; Kirchner, B., Vibrational Signatures of Anionic Cyano Groups in Imidazolium Ionic Liquids. *Vib. Spectros.* **2017**, *91*, 141-146.

12. Socrates, G., *Infrared and Raman Characteristic Group Frequencies : Tables and Charts*. 3rd ed.; Wiley: Chichester ; New York, 2001.