## **Supporting Information**

## On the Formation of Hydroxylamine in Low-Temperature Interstellar Model Ices

Yetsedaw A. Tsegaw,<sup>1</sup> Sándor Góbi,<sup>2,3</sup> Marko Förstel,<sup>2,3,4</sup> Pavlo Maksyutenko,<sup>2,3,5</sup> Wolfram Sander\*,<sup>1</sup> and Ralf I. Kaiser\*,<sup>2,3</sup>

<sup>1</sup> Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany

<sup>2</sup> Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, 96822 HI, USA

<sup>3</sup> W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, 96822 HI, USA <sup>4</sup> Present address: Berlin Institute of Technology, IOAP Hardenbergstrasse 36, 10623 Berlin, Germany

<sup>5</sup> Present address: Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA, USA

| This Work (cm <sup>-1</sup> )             |                                          | Literature           | Dof <sup>b</sup> | Assignment <sup>b</sup> |                         |                                     |
|-------------------------------------------|------------------------------------------|----------------------|------------------|-------------------------|-------------------------|-------------------------------------|
| Before<br>Irradiation <sup><i>a</i></sup> | After<br>Irradiation <sup><i>a</i></sup> | $(\mathrm{cm}^{-1})$ | Kel.             | Species                 | Vibration               | Characterization                    |
| 3426m, 3379vs                             | 3418sh, 3378s                            | 3372                 | 1                | NH <sub>3</sub>         | $v_3$                   | Antisymmetric Stretch               |
| 3324sh, 3308vs                            | 3308m                                    | 3290                 | 1                | $NH_3$                  | $2v_4$                  | Overtone                            |
| 3269sh,<br>3236vs, 3203vs                 | 3236m, 3204m                             | 3212                 | 1                | NH <sub>3</sub>         | <i>v</i> <sub>1</sub>   | Symmetric Stretch                   |
|                                           | 3135–2976w,b                             | 3209–<br>3074        | 2, 3             | NH <sub>2</sub> OH      | $v_2$                   | N–H Stretch<br>(Symmetric)          |
|                                           | 2903vw                                   | 2848                 | 4                | $H_2O_2$                | $v_2 + v_6$             | Combination                         |
|                                           |                                          | 2943-                | 23               |                         | $v_3 + v_4, 2v_4,$      | Combinations /                      |
| •••                                       | 2936–2656w,vb                            | 2507                 | 2,0              | NH <sub>2</sub> OH      | $v_3 + v_5, v_4 + v_8$  | Overtone                            |
|                                           | 2232w                                    | 2235                 | 2, 5, 6          | $N_2O$                  | <i>V</i> <sub>3</sub>   | N≡N Stretch                         |
|                                           | 2104w                                    | 2105                 | 7                | $O_3$                   | $v_1 + v_3$             | Combination                         |
|                                           | 1875w                                    | 1875                 | 2, 6, 8, 9       | NO                      | $v_1$                   | Fundamental                         |
|                                           | 1836vw                                   | 1833–<br>1851        | 2, 6, 9          | $N_2O_3$                | $v_1$                   | N=O Stretch                         |
|                                           | 1727vw                                   | 1737                 | 2, 6, 9          | (NO) <sub>2</sub>       | $v_1$                   | N=O Stretch                         |
|                                           |                                          |                      |                  |                         |                         | (Antisymmetric)                     |
| 1646 1624                                 | 1642 1624                                | 1629                 | 1                | NILL                    |                         | Degenerated                         |
| 1040m, 1024m                              | 1043W, 1024W                             | 1028                 |                  | INH <sub>3</sub>        | $v_4$                   | Deformation                         |
|                                           | 1610m                                    | 1614                 | 5                | NO                      | 2 <i>V</i> <sub>3</sub> | N=O Stretch                         |
| •••                                       | 101011                                   | 1014                 |                  | $\mathbf{NO}_2$         |                         | (Antisymmetric)                     |
| 1560w                                     | 1560vw                                   | 1549                 | 7                | $O_2$                   | $v_1$                   | Fundamental                         |
|                                           | 1507w                                    | 1507                 | 2, 10, 11        | HNO                     | $v_2$                   | HNO Bend                            |
|                                           | 1494w,b                                  | 1486                 | 2-3              | NH <sub>2</sub> OH      | $v_4$                   | NOH Bend                            |
|                                           | 1386w,b                                  | 1389                 | 4                | $H_2O_2$                | $v_6$                   | Antisymmetric Bend                  |
|                                           | 1303w,b                                  | 1303                 | 2, 6, 9          | $N_2O_3$                | V <sub>3</sub>          | NO <sub>2</sub> Stretch (Symmetric) |
|                                           | 1230vw                                   | 1240                 | 12               | $N_2O_2$                | $v_1$                   | $NO_2$ Stretch                      |
|                                           | 1100m b                                  | 1144                 | 2, 3             | NH <sub>2</sub> OH      | 125                     | NH <sub>2</sub> Wag                 |
| 1053m                                     | 1100111,0                                | 1111                 |                  | 1112011                 | v 5                     | Symmetric                           |
| 1025m 981sh                               | 1031m,b                                  | 1097                 | 1                | $NH_3$                  | $v_2$                   | Deformation                         |
| 102011, 901011                            | 1036s                                    | 1037                 | 7                | $O_3$                   | V3                      | Antisymmetric Stretch               |
|                                           | 798vw                                    | 880                  | 12               | $N_2O_2$                | V2                      | N–N Stretch                         |
|                                           | 703vw                                    | 702                  | 7                | $O_3$                   | $v_2$                   | Bend                                |

Table S1. Infrared Absorption Features Recorded Before and After the Electron Irradiation of Ammonia–Oxygen (NH<sub>3</sub>–O<sub>2</sub>) 1:10 Ices at 5.5 K

<sup>a</sup> Band intensities, vs: very strong, s: strong, m: medium, w: weak, vw: very weak, sh: shoulder, b: broad, vb: very broad. <sup>b</sup> Assignment based on references.

| Process                                         | Decay<br>Product      | Number of Molecules<br>Produced/Decomposed During Irradiation |  |  |  |
|-------------------------------------------------|-----------------------|---------------------------------------------------------------|--|--|--|
| $\mathrm{NH}_3 \rightarrow \mathrm{X}$          |                       | $(6.9 \pm 0.7) 	imes 10^{16}$                                 |  |  |  |
| Fraction of NH <sub>3</sub> degraded            |                       | $95 \pm 20\%$                                                 |  |  |  |
| $O_2 \rightarrow O$                             | 0                     | $(5.0 \pm 0.5) 	imes 10^{17}$                                 |  |  |  |
| Fraction of O <sub>2</sub> degraded             |                       | $88 \pm 19\%$                                                 |  |  |  |
|                                                 | NH <sub>2</sub> OH    | $(3.6 \pm 0.2) \times 10^{16}$                                |  |  |  |
|                                                 | <b>O</b> <sub>3</sub> | $(1.2 \pm 0.5) \times 10^{16}$                                |  |  |  |
|                                                 | NO                    | $(7.3 \pm 0.1) \times 10^{15}$                                |  |  |  |
|                                                 | (NO) <sub>2</sub>     | $(5.0 \pm 0.5) 	imes 10^{14}$                                 |  |  |  |
|                                                 | $N_2O_2$              | $(1.2 \pm 0.6) \times 10^{14}$                                |  |  |  |
| Number of molecules in sample after irradiation | NO <sub>2</sub>       | $(9.6 \pm 0.4) 	imes 10^{14}$                                 |  |  |  |
| sumple and mashaish                             | $H_2O_2$              | $(4.2 \pm 0.6) \times 10^{14}$                                |  |  |  |
|                                                 | $N_2O$                | $(3.8 \pm 0.1) \times 10^{14}$                                |  |  |  |
|                                                 | $N_2O_3$              | $(1.2 \pm 0.1) 	imes 10^{14}$                                 |  |  |  |
|                                                 | HNO                   | $(< 6.0 \pm 4.1) \times 10^{13}$                              |  |  |  |
|                                                 | $H_2O$                | $(< 3.1 \pm 0.2) \times 10^{13}$                              |  |  |  |
| Nitrogen balance <sup>a</sup>                   |                       | $66 \pm 7\%$                                                  |  |  |  |
| Oxygen balance <sup>b</sup>                     |                       | $6 \pm 1\%$                                                   |  |  |  |

Table S2. Mass Balance of the Ammonia–Oxygen  $(NH_3-O_2)$  1:10 Ice Sample as well as that of the Irradiation Products Determined from their Experimental IR Decay/Growth Curves at 5.5 K

<sup>*a*</sup> Fraction of nitrogen atoms originating from ammonia destruction that are needed for the formation of the irradiation products. <sup>*b*</sup> Fraction of oxygen atoms originating from molecular oxygen destruction that are needed for the formation of the irradiation products.



**Figure S1**. Infrared spectrum of the ammonia–oxygen ( $NH_3$ – $O_2$ ) 1:10 ice at 5.5 K before (black line) and after (red line) 5 keV electron irradiation with the most important radiolysis products marked. The infrared assignments before and after the irradiation are compiled in Table S1.



**Figure S2**. Selected TPD profiles of (a)  $m/z = 17 \text{ (NH}_3^+)$ , (b)  $m/z = 30 \text{ (NO}^+)$ , (c)  $m/z = 35 \text{ (NH}_3^- \text{H}_2\text{O}^+)$ , (d)  $m/z = 31 \text{ (HNO}^+)$ , (e)  $m/z = 33 \text{ (NH}_2\text{OH}^+)$ , and (f)  $m/z = 46 \text{ (NO}_2^+)$  subliming from the irradiated ammonia–oxygen (NH<sub>3</sub>–O<sub>2</sub>) 1 : 10 ice recorded at photoionization energies of 10.49 eV.

## REFERENCES

1. Zheng, W.; Kaiser, R. I. An Infrared Spectroscopy Study of the Phase Transition in Solid Ammonia. *Chem. Phys. Lett.* 2007, *440*, 229–234.

2. Fedoseev, G.; Ioppolo, S.; Lamberts, T.; Zhen, J. F.; Cuppen, H. M.; Linnartz, H. Efficient Surface Formation Route of Interstellar Hydroxylamine Through NO Hydrogenation. II. The Multilayer Regime in Interstellar Relevant Ices. *J. Chem. Phys.* 2012, *137*, 054714.

3. Zheng, W.; Kaiser, R. I. Formation of Hydroxylamine (NH<sub>2</sub>OH) in Electron-Irradiated Ammonia–Water Ices. *J. Phys. Chem. A* 2010, *114*, 5251–5255.

4. Zheng, W.; Jewitt, D.; Kaiser, R. I. Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron-irradiated Crystalline Water Ice. Astrophys. J. 2006, 639, 534–548.

5. Jamieson, C. S.; Bennett, C. J.; Mebel, A. M.; Kaiser, R. I. Investigating the Mechanism for the Formation of Nitrous Oxide  $[N_2O(X^1\Sigma^+)]$  in Extraterrestrial Ices. *Astrophys. J.* 2005, 624, 436–447.

6. Ioppolo, S.; Fedoseev, G.; Minissale, M.; Congiu, E.; Dulieu, F.; Linnartz, H. Solid State Chemistry of Nitrogen Oxides - Part II: Surface Consumption of NO<sub>2</sub>. *Phys. Chem. Chem. Phys.* 2014, *16*, 8270–8282.

7. Bennett, C. J.; Kaiser, R. I. Laboratory Studies on the Formation of Ozone  $(O_3)$  on Icy Satellites and on Interstellar and Cometary Ices. *Astrophys. J.* 2005, 635, 1362–1369.

8. Stirling, A.; Pápai, I.; Mink, J.; Salahub, D. R. Density-Functional Study of Transformations of Nitrogen-Oxides *J. Chem. Phys.* 1994, *100*, 2910–2923.

9. Fateley, W. G.; Bent, H. A.; Crawford, B. Infrared Spectra of the Frozen Oxides of Nitrogen. *J. Chem. Phys.* 1959, *31*, 204–217.

10. Jacox, M. E.; Milligan, D. E. Matrix-Isolation Study of the Reaction of H Atoms with NO. *J. Mol. Spectrosc.* 1973, *48*, 536–559.

11. Ruzi, M.; Anderson, D. T. Quantum Diffusion-Controlled Chemistry: Reactions of Atomic Hydrogen with Nitric Oxide in Solid Parahydrogen. *J. Phys. Chem. A* 2015, *119*, 12270–12283.

12. Arnold, D. W.; Neumark, D. M. Study of  $N_2O_2$  by Photoelectron Spectroscopy of  $N_2O_2^-$ . J. Chem. Phys. 1995, 102, 7035-7045.