**Supplementary Information** 

## A Combined Experimental and Theoretical Study on the Formation of the 2-Methyl-1-silacycloprop-2-enylidene Molecule via the Crossed Beam Reactions of the Silylidyne Radical (SiH; $X^2\Pi$ ) with Methylacetylene (CH<sub>3</sub>CCH; $X^1A_1$ ) and D4-Methylacetylene (CD<sub>3</sub>CCD; $X^1A_1$ )

Tao Yang, Beni B. Dangi, Ralf I. Kaiser\* Department of Chemistry, University of Hawai'i at Manoa, Honolulu HI 96822

Luke W. Bertels, Martin Head-Gordon\*

Department of Chemistry, University of California, Berkeley, Berkeley CA 94720

Corresponding Authors:

Professor Dr. Ralf I. Kaiser; Email: <u>ralfk@hawaii.edu</u>; Phone: +1-808-956-5731 Professor Martin Head-Gordon; Email: <u>mhg@cchem.berkeley.edu</u>; Phone: +1-510-642-5957 Table S1. Structures of the reactants, products, intermediates, and transition states calculated at the  $\omega$ B97X-V/cc-pVTZ level of theory. The point groups and symmetries of electronic wave functions are included, with the energies relative to the reactants are given in kJ mol<sup>-1</sup>. Bond lengths are reported in picometers and angles in degrees. Dark grey: carbon; blue grey: silicon; white: hydrogen.

|                                               |                      | Reactants |                                               |                |
|-----------------------------------------------|----------------------|-----------|-----------------------------------------------|----------------|
| СН                                            | J <sub>3</sub> CCH   |           | SiH                                           | [              |
| H1 = C1 =                                     | C2 - C3<br>H2        |           | (si)-                                         | H              |
| C                                             | 0<br>1               |           | 0                                             | <sup>2</sup> Π |
| $\frac{C_{3v}}{r(C \cdot C_2)}$               | $\frac{-A_1}{110.8}$ |           | r(S; H)                                       | 152.0          |
| $r(C_1, C_2)$                                 | 119.0                |           | 7(31,11)                                      | 132.9          |
| $r(C_2, C_3)$                                 | 140.5                |           |                                               |                |
| $r(C_1,H_1)$<br>$r(C_2,H_2)$                  | 100.3                |           |                                               |                |
| $\theta(C_2 C_2 H_2)$                         | 109.2<br>110.6°      |           |                                               |                |
| 0(02,03,112)                                  | 110.0                | Products  |                                               |                |
| [                                             | [p1]                 |           | [p2]                                          | ]              |
| H4<br>H2 C3<br>H3                             | CT<br>CT             |           | H1 C1 C2 H2                                   | H3<br>C3<br>H4 |
| -1.01 (CC                                     | SD(T)/CBS)           |           | 24.0 (CCSD)                                   | (T)/CBS)       |
| C <sub>s</sub>                                | $-{}^{1}A'$          |           | $C_1 - 1$                                     | <sup>l</sup> A |
| $r(Si,C_1)$                                   | 181.4                |           | $r(Si,C_1)$                                   | 183.3          |
| $r(Si,C_2)$                                   | 182.7                |           | $r(Si,C_3)$                                   | 197.1          |
| $r(C_1, C_2)$                                 | 134.3                |           | $r(C_1, C_2)$                                 | 136.9          |
| $r(C_2, C_3)$                                 | 148.8                |           | $r(C_2, C_3)$                                 | 148.4          |
| $r(C_1,H_1)$                                  | 1.085                |           | $r(C_1,H_1)$                                  | 108.3          |
| $r(C_3, H_2)$                                 | 1.094                |           | $r(C_2,H_2)$                                  | 109.3          |
| $\theta$ (Si,C <sub>1</sub> ,C <sub>2</sub> ) | 68.9°                |           | $r(C_3, H_3)$                                 | 108.7          |
| $\theta(C_1, C_2, C_3)$                       | 137.0°               |           | $\theta$ (Si,C <sub>1</sub> ,C <sub>2</sub> ) | 84.8°          |
|                                               |                      |           | $\theta$ (Si,C <sub>3</sub> ,C <sub>2</sub> ) | 77.1°          |
|                                               |                      |           | $\theta$ (C <sub>1</sub> ,Si,C <sub>3</sub> ) | 75.3°          |
|                                               |                      |           | $\theta(C_1, C_2, C_3)$                       | 109.2°         |

|                              | Intern                                                       | nediates                      |                    |
|------------------------------|--------------------------------------------------------------|-------------------------------|--------------------|
| [i1]                         |                                                              | [i2]                          |                    |
| -70.0<br>Cs - <sup>2</sup> A | C2<br>(3) (H4)<br>(3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | H1 $-74.4$ $C_{s} - {}^{2}A$  | , <sup>C3</sup> H5 |
| $r(Si,C_1)$                  | 187.8                                                        | $r(\mathrm{Si},\mathrm{C}_1)$ | 188.2              |
| $r(Si,H_1)$                  | 153.1                                                        | $r(Si,H_1)$                   | 152.7              |
| $r(C_1, C_2)$                | 131.6                                                        | $r(C_1, C_2)$                 | 131.9              |
| $r(C_2, C_3)$                | 147.0                                                        | $r(C_2, C_3)$                 | 147.0              |
| $r(C_1,H_2)$                 | 109.7                                                        | $r(C_1,H_2)$                  | 109.0              |
| $r(C_3, H_3)$                | 109.8                                                        | $r(C_3, H_3)$                 | 109.9              |
| $\theta(Si,C_1,C_2)$         | 116.8°                                                       | $\theta(Si,C_1,C_2)$          | 118.2°             |
| $\theta(C_1, C_2, C_3)$      | 142.1°                                                       | $\theta(C_1, C_2, C_3)$       | 139.9°             |
| [i3]                         |                                                              | [i4]                          |                    |





| -174.1<br>C <sub>1</sub> $-^{2}$ A            |        | -207.6<br>C <sub>s</sub> $-^{2}$ A'           |        |
|-----------------------------------------------|--------|-----------------------------------------------|--------|
| $r(Si,C_1)$                                   | 181.2  | $r(Si,C_1)$                                   | 181.3  |
| $r(Si,C_2)$                                   | 182.3  | $r(Si,H_1)$                                   | 148.6  |
| $r(Si,H_1)$                                   | 150.9  | $r(C_1, C_2)$                                 | 121.0  |
| $r(C_1, C_2)$                                 | 134.1  | $r(C_2, C_3)$                                 | 146.0  |
| $r(C_2, C_3)$                                 | 148.7  | $\theta$ (H <sub>1</sub> ,Si,H <sub>2</sub> ) | 111.8° |
| $r(C_1,H_2)$                                  | 108.4  |                                               |        |
| <i>r</i> (C <sub>3</sub> ,H <sub>3</sub> )    | 109.3  |                                               |        |
| $\theta$ (Si,C <sub>1</sub> ,C <sub>2</sub> ) | 68.8°  |                                               |        |
| $\theta(C_1, C_2, C_3)$                       | 136.9° |                                               |        |

| [i5]                                          |                   | [i6]                                      |             |
|-----------------------------------------------|-------------------|-------------------------------------------|-------------|
| H4<br>H5 C3 C2<br>H3                          | H1<br>SI H2<br>C1 | H1<br>S1<br>C1 C2<br>H2                   | H5<br>C3 H4 |
| -126.6                                        |                   | -232.4                                    |             |
| $r(Si,C_1)$                                   | 183.1             | $r(\text{Si}, \text{C}_1)$                | 186.0       |
| $r(Si,C_2)$                                   | 189.4             | $r(Si,C_3)$                               | 191.5       |
| $r(Si,H_1)$                                   | 148.1             | $r(Si,H_1)$                               | 150.0       |
| $r(C_1, C_2)$                                 | 129.6             | $r(C_1, C_2)$                             | 134.5       |
| $r(C_2, C_3)$                                 | 148.6             | $r(C_2, C_3)$                             | 152.4       |
| $r(C_3,H_3)$                                  | 109.2             | $r(C_1,H_2)$                              | 108.2       |
| $\theta$ (Si,C <sub>1</sub> ,C <sub>2</sub> ) | 72.3°             | $r(C_2,H_3)$                              | 109.1       |
| $\theta(C_1, C_2, C_3)$                       | 149.3°            | $r(C_3, H_4)$                             | 109.2       |
|                                               |                   | $\theta(\text{Si},\text{C}_1,\text{C}_2)$ | 90.4°       |

|                                               | Trans             | sition States                     |        |
|-----------------------------------------------|-------------------|-----------------------------------|--------|
| [i1-i2]                                       |                   | [i1-i3]                           |        |
| H5<br>H3<br>C3<br>C2<br>H4                    | SI HI<br>CI<br>H2 | H3 C2 C1                          |        |
| -66.2<br>C <sub>1</sub> - <sup>2</sup> A      |                   | -68.5<br>C <sub>1</sub> $-^{2}$ A |        |
| $r(Si,C_1)$                                   | 188.6             | $r(Si,C_1)$                       | 187.3  |
| $r(Si,H_1)$                                   | 153.1             | $r(Si,H_1)$                       | 153.4  |
| $r(C_1, C_2)$                                 | 129.9             | $r(C_1, C_2)$                     | 131.2  |
| $r(C_2, C_3)$                                 | 146.5             | $r(C_2, C_3)$                     | 147.0  |
| $r(C_1, H_2)$                                 | 108.9             | $r(C_1, H_2)$                     | 109.5  |
| $r(C_3, H_3)$                                 | 109.2             | $r(C_3, H_3)$                     | 109.3  |
| $\theta$ (Si,C <sub>1</sub> ,C <sub>2</sub> ) | 97.8°             | $\theta(Si,C_1,C_2)$              | 106.1° |
| $\theta(C_1, C_2, C_3)$                       | 156.1°            | $\theta(C_1, C_2, C_3)$           | 145.3° |
| $\phi(Si,C_1,C_2,C_3)$                        | 41.8°             | $\phi(H_1,Si,C_1,C_2)$            | 145.2° |

| [i1-                                          | i4]                  | [i2-i3]                        |               |  |
|-----------------------------------------------|----------------------|--------------------------------|---------------|--|
| HI CI                                         | C2 C3 H5             | H3<br>H4 ,3<br>H5 C2           | Si HI<br>CI   |  |
| -15<br>Cr -                                   | .1<br><sup>2</sup> Δ | -66.1                          |               |  |
| $r(\text{Si} C_1)$                            | 185.1                | $\frac{C_1 - A}{r(SiC_1)}$     | 188.6         |  |
| $r(Si, H_1)$                                  | 151.6                | $r(Si, U_1)$                   | 153.0         |  |
| $r(Si,H_1)$<br>$r(Si,H_2)$                    | 163.9                | $r(C_1, C_2)$                  | 130.0         |  |
| $r(C_1, C_2)$                                 | 124.0                | $r(C_1, C_2)$<br>$r(C_2, C_3)$ | 146.5         |  |
| $r(C_1, C_2)$<br>$r(C_2, C_3)$                | 145.5                | $r(C_1, H_2)$                  | 108.9         |  |
| $r(C_1,H_2)$                                  | 151.7                | $r(C_3, H_3)$                  | 109.7         |  |
| $r(C_3,H_3)$                                  | 109.5                | $\theta(Si,C_1,C_2)$           | 97.8°         |  |
| $\theta$ (Si.C <sub>1</sub> ,C <sub>2</sub> ) | 171.6°               | $\theta(C_1, C_2, C_3)$        | 155.8°        |  |
| - ( ) - 1) - 2)                               |                      | $\phi(H_1,Si,C_1,C_2)$         | 126.8°        |  |
| [i2-                                          | i4]                  | [i3-i5]                        |               |  |
| HI CI                                         | H3<br>C2<br>H3<br>H5 | H2<br>2.8                      | C1            |  |
| $C_1 - {}^2A$                                 |                      | $C_1 - {}^2A$                  | $C_{1}^{2.0}$ |  |
| $r(Si,C_1)$                                   | 185.1                | $r(Si,C_1)$                    | 218.2         |  |
| $r(Si,H_1)$                                   | 151.6                | $r(Si,C_2)$                    | 182.0         |  |
| $r(Si,H_2)$                                   | 163.9                | $r(Si,H_1)$                    | 150.1         |  |
| $r(C_1, C_2)$                                 | 124.0                | $r(Si,H_2)$                    | 155.2         |  |
| $r(C_2, C_3)$                                 | 145.5                | $r(C_1,C_2)$                   | 132.5         |  |
| $r(C_1,H_2)$                                  | 151.7                | $r(C_2,C_3)$                   | 149.5         |  |
| $r(C_3,H_3)$                                  | 109.5                | $r(C_1,H_2)$                   | 160.3         |  |
| $\theta$ (Si,C <sub>1</sub> ,C <sub>2</sub> ) | 171.4°               | $r(C_3, H_3)$                  | 109.2         |  |
|                                               |                      | $\theta(Si,C_2,C_1)$           | 86.3°         |  |
|                                               |                      | $\theta(C_1, C_2, C_3)$        | 132.2°        |  |

| $136.3$ -114.1 C $^{2}$                                                                                |  |
|--------------------------------------------------------------------------------------------------------|--|
| $\frac{c_1 - R}{r(SiC_1)} = \frac{1905}{r(SiC_2)} = \frac{r(SiC_2)}{r(SiC_2)} = \frac{1864}{r(SiC_2)}$ |  |
| $r(Si,C_1)$ 190.5 $r(Si,C_2)$ 230.0 $r(Si,C_2)$ 217.7                                                  |  |
| $r(Si,C_2)$ 212.6 $r(Si,H_1)$ 148.5                                                                    |  |
| $r(Si,C_3)$ 212.0 $r(Si,H_1)$ 110.5 $r(Si,H_1)$ 124.8                                                  |  |
| $r(C_1, C_2)$ 131.9 $r(C_2, C_2)$ 146.8                                                                |  |
| $r(C_1, C_2)$ 151.) $r(C_2, C_3)$ 140.0<br>$r(C_2, C_3)$ 100.3                                         |  |
| $r(C_2, C_3)$ 105.0 $r(C_3, R_3)$ 105.5 $r(C_4, R_5)$ 105.5                                            |  |
| $r(C_1, H_2)$ 100.1 $\theta(C_1, C_2)$ 00.4 $r(C_2, H_2)$ 160.3°                                       |  |
| $r(C_2, H_3)$ 131.9 $r(C_1, C_2, C_3)$ 109.5                                                           |  |
| $r(C_3,H_3)$ 120.1<br>$r(C_2,H_3)$ 108.2                                                               |  |
| $A(S_{1}, C_{2})$ 80 1°                                                                                |  |
| $A(S_1, C_1, C_2)$ 07.1<br>$A(S_1, C_2, C_2)$ 75.7°                                                    |  |
| $\theta(G_1, G_3, G_2)$ 75.7<br>$\theta(C_1, S_1, C_2)$ 75.3°                                          |  |