Supporting Information for

Formation of Complex Organic Molecules in Methanol and Methanol - Carbon Monoxide Ices Exposed to Ionization Radiation - A Combined FTIR and Reflectron Time-of-Flight Mass Spectroscopic Study

Surajit Maity, Ralf I. Kaiser\* and Brant M. Jones\*

| Formula                                        | Name                                    | Sources                                     | Abundances (molecule cm <sup>-2</sup> ) |  |  |  |  |  |
|------------------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|--|--|--|--|--|
| Aldehydes and ketones                          |                                         |                                             |                                         |  |  |  |  |  |
| CH <sub>3</sub> CHO                            | Acetaldehyde                            | $Sgr B2(N)^6$                               | $1.4 \times 10^{17}$                    |  |  |  |  |  |
|                                                |                                         | TMC-1 <sup>7</sup>                          | $6.0 	imes 10^{12}$                     |  |  |  |  |  |
|                                                |                                         | Galactic Center <sup>8</sup>                | $8.2 \times 10^{14}$                    |  |  |  |  |  |
| CH <sub>3</sub> CH <sub>2</sub> CHO            | Propanal                                | Sgr B2 $(N)^1$                              |                                         |  |  |  |  |  |
|                                                | -                                       | Galactic Center <sup>3</sup>                | $1.0 \times 10^{14}$                    |  |  |  |  |  |
| CH <sub>2</sub> CHCHO                          | Propenal                                | Sgr B2(N) <sup>1</sup>                      |                                         |  |  |  |  |  |
|                                                | -                                       | Galactic Center <sup>3</sup>                | $2.7 \times 10^{13}$                    |  |  |  |  |  |
| HC <sub>2</sub> CHO                            | Propynal                                | Sgr B2 $(N)^1$                              |                                         |  |  |  |  |  |
|                                                |                                         | TMC-1 <sup>2</sup>                          | $4.0 	imes 10^{13}$                     |  |  |  |  |  |
|                                                |                                         | Galactic Center <sup>3</sup>                | $4.1 \times 10^{13}$                    |  |  |  |  |  |
| CH <sub>3</sub> COCH <sub>3</sub>              | Acetone                                 | Sgr B2(N) <sup>16</sup>                     | $2.9 \times 10^{16}$                    |  |  |  |  |  |
| c-H <sub>2</sub> C <sub>3</sub> O              | Cyclopropenone                          | $\operatorname{Sgr} \operatorname{B2(N)}^5$ | $1.0 \times 10^{13}$                    |  |  |  |  |  |
| Alcohols                                       |                                         |                                             |                                         |  |  |  |  |  |
| CH <sub>3</sub> CH <sub>2</sub> OH             | Ethanol                                 | Sgr B2(N) <sup>15</sup>                     | $4.4 \times 10^{15}$                    |  |  |  |  |  |
|                                                |                                         | Galactic Center <sup>12</sup>               | $9.0 \times 10^{14}$                    |  |  |  |  |  |
| H <sub>2</sub> CCHOH                           | Vinyl alcohol                           | Sgr B2(N) <sup>10</sup>                     | $2.2 \times 10^{14}$                    |  |  |  |  |  |
| HOCH <sub>2</sub> CH <sub>2</sub> OH           | Ethylene glycol                         | Sgr B2(N) <sup>17</sup>                     | $2.3 \times 10^{15}$                    |  |  |  |  |  |
|                                                | , , , , , , , , , , , , , , , , , , , , | Galactic Center <sup>3</sup>                | $3.3 \times 10^{14}$                    |  |  |  |  |  |
| Acids and Esters                               | L                                       | I                                           |                                         |  |  |  |  |  |
| CH <sub>3</sub> COOH                           | Acetic acid                             | Sgr B2(N) <sup>13</sup>                     | $7.0 \times 10^{16}$                    |  |  |  |  |  |
| HCOOCH <sub>3</sub>                            | Methyl formate                          | Sgr B2(N) <sup>11</sup>                     | $1.9 \times 10^{17}$                    |  |  |  |  |  |
| -                                              |                                         | Galactic Center <sup>12</sup>               | $1.1 \times 10^{15}$                    |  |  |  |  |  |
| HCOOC <sub>2</sub> H <sub>5</sub>              | Ethyl formate                           | Sgr B2(N) <sup>18</sup>                     | $5.4 \times 10^{16}$                    |  |  |  |  |  |
|                                                |                                         | Orion KL <sup>19</sup>                      | $9.0 \times 10^{14}$                    |  |  |  |  |  |
| CH <sub>3</sub> COOCH <sub>3</sub>             | Methyl acetate                          | Orion KL <sup>19</sup>                      | $4.2 \times 10^{15}$                    |  |  |  |  |  |
| Amide                                          |                                         |                                             |                                         |  |  |  |  |  |
| NH <sub>2</sub> CHO                            | Formamide                               | $Sgr B2(N)^4$                               | $6.2 \times 10^{15}$                    |  |  |  |  |  |
| CH <sub>3</sub> CONH <sub>2</sub>              | Acetamide                               | $\operatorname{Sgr} \operatorname{B2(N)}^4$ | $1.6 \times 10^{14}$                    |  |  |  |  |  |
| Ether                                          |                                         |                                             |                                         |  |  |  |  |  |
| CH <sub>3</sub> OCH <sub>3</sub>               | Dimethyl ether                          | Sgr B2 $(N)^{12}$                           | $6.7 \times 10^{15}$                    |  |  |  |  |  |
|                                                |                                         | Galactic Center <sup>12</sup>               | $9.0 	imes 10^{14}$                     |  |  |  |  |  |
| C <sub>2</sub> H <sub>5</sub> OCH <sub>3</sub> | Methylethyl ether                       | SgrB2 $(N)^{20}$                            | $1.0 \times 10^{14-15}$                 |  |  |  |  |  |
| 2 0 0                                          | 5 5                                     | W51e2 <sup>20</sup>                         | $2.0 	imes 10^{14}$                     |  |  |  |  |  |
| Others                                         |                                         |                                             |                                         |  |  |  |  |  |
| c-C <sub>2</sub> H <sub>4</sub> O              | Ethylene oxide                          | $Sgr B2(N)^9$                               | $3.3 \times 10^{14}$                    |  |  |  |  |  |
|                                                |                                         | Galactic Center <sup>3</sup>                | $8.5 \times 10^{13}$                    |  |  |  |  |  |
| HOCH <sub>2</sub> CHO                          | Glycolaldehyde                          | Sgr B2(N) <sup>14</sup>                     | $1.8 	imes 10^{15}$                     |  |  |  |  |  |
| -                                              |                                         | Galactic Center <sup>3</sup>                | $2.5 	imes 10^{14}$                     |  |  |  |  |  |

Table S1. List of oxygen bearing complex organic molecules observed in the selective interstellar sources.

Note: The abundance in galactic center is an average of the abundances in MC G-0.11-0.08, MC G-0.02-0.07 and MC G+0.693-0.03

**Table S2.** List of parameters derived using Monte Carlo simulations (CASINO).

|                          | CH <sub>3</sub> OH          | CH <sub>3</sub> OH+CO       |  |
|--------------------------|-----------------------------|-----------------------------|--|
| Energy of the Electrons  | 5.0 keV                     | 5.0 keV                     |  |
| Transmitted Energy       | 0.008±0.001 keV             | 0.029±0.008 keV             |  |
| Backscattered Energy     | $1.06 \pm 0.16 \text{ keV}$ | $1.10 \pm 0.20 \text{ keV}$ |  |
| Penetration Depth        | $252 \pm 10 \text{ nm}$     | $265 \pm 10 \text{ nm}$     |  |
| Total energy transferred | $4.65 \pm 0.32 \text{ keV}$ | $4.60 \pm 0.31 \text{ keV}$ |  |
| Dose per molecule        | $6.5 \pm 0.8 \text{ eV}$    | $5.2 \pm 0.8 \text{ eV}$    |  |

| Molecules                                                                         | Mass      | Ice: CH <sub>3</sub> OH |           | Ice: CH <sub>3</sub> OH-CO (4:5) |           |
|-----------------------------------------------------------------------------------|-----------|-------------------------|-----------|----------------------------------|-----------|
|                                                                                   | m/z (amu) | %                       | sample    | Vapor %                          | sample    |
| Acetaldehyde<br>(CH <sub>3</sub> CHO)                                             | 44        | 1.0±0.2                 |           | 0.5±0.1                          | Samula 2  |
| Acetone<br>(CH <sub>3</sub> COCH <sub>3</sub> )                                   | 58        | 1.2±0.2                 | Samula 1  | 0.6±0.1                          |           |
| 1-Propanol<br>(CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH)                | 60        | 1.2±0.2                 | Sample 1  | 0.6±0.1                          | Sample 2  |
| 1-Butanol<br>(CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH) | 74        | 1.0±0.2                 |           | 0.5±0.1                          |           |
| Ethanol<br>(CH <sub>3</sub> CH <sub>2</sub> OH)                                   | 46        | 1.1±0.2                 | Sample 3  | 0.6±0.1                          | Sample 4  |
| Propanal<br>(CH <sub>3</sub> CH <sub>2</sub> CHO)                                 | 58        | 1.2±0.2                 |           | 0.6±0.1                          |           |
| Butanal<br>(CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CHO)                  | 72        | 1.0±0.2                 |           | 0.5±0.1                          |           |
| 2-Butanol<br>(CH <sub>3</sub> CH <sub>2</sub> CH(OH)CH <sub>3</sub>               | 74        | 1.2±0.2                 |           | 0.6±0.1                          |           |
| Dimethyl Ether<br>(CH <sub>3</sub> OCH <sub>3</sub> )                             | 46        | 1.0±0.2                 | Sample 5  | 0.5±0.1                          | Sample 6  |
| Allyl Alcohol<br>(CH <sub>2</sub> CHCHOH)                                         | 58        | 1.0±0.2                 |           | 0.5±0.1                          |           |
| 2-Propanol<br>(CH <sub>3</sub> CH(OH)CH <sub>3</sub> )                            | 60        | 1.2±0.2                 |           | 0.6±0.1                          |           |
| Butanone<br>(CH <sub>3</sub> CH <sub>2</sub> COCH <sub>3</sub> )                  | 72        | 1.0±0.2                 |           | 0.5±0.1                          |           |
| <i>iso</i> -Butanol<br>(CH <sub>3</sub> CH(CH <sub>3</sub> )CH <sub>2</sub> OH)   | 74        | 2.1±0.2                 |           | 1.1±0.1                          |           |
| <i>iso</i> -Butanal<br>(CH <sub>3</sub> CH(CH <sub>3</sub> )CHO)                  | 72        | 1.9±0.2                 | Sample 7  | 1.0±0.1                          | Sample 8  |
| <i>tert</i> -Butanol<br>((CH <sub>3</sub> ) <sub>3</sub> COH)                     | 74        | 1.1±0.2                 |           | 0.6±0.1                          |           |
| Propenal<br>(CH <sub>2</sub> CHCHO)                                               | 56        | 2.5±0.2                 | Sample 9  | 6.5±0.5                          | Sample 10 |
| Ethylene Glycol<br>(HOCH <sub>2</sub> CH <sub>2</sub> OH)                         | 62        | 4.8±0.4                 | Sample 11 | 4.7±0.4                          | Sample 12 |

**Table S3:** List of molecules, mass-to-charge ratios of the molecular ion peaks and % of the premixed vapors are shown for each sample mixture used for the calibration experiments.



**Figure S1**. Infrared absorption spectra of methanol - carbon monoxide mixed ices (CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-CO, CH<sub>3</sub><sup>18</sup>OH-C<sup>18</sup>O, <sup>13</sup>CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-<sup>13</sup>CO, CH<sub>3</sub><sup>18</sup>OH-CO and CH<sub>3</sub>OH-C<sup>18</sup>O) before (dotted trace) and after (solid trace) irradiation at 5.5 K. Newly emerged absorption features in each ice are shown in 2200 – 1600 cm<sup>-1</sup> and 1400 – 800 cm<sup>-1</sup> regions along with the assignments as listed in Table 2.



**Figure S2.** Sublimation profiles recorded using ReTOF mass spectrometer at the mass-to-charge ratios correspond to the isotopomer of the products  $C_2H_4O$ ,  $C_2H_4O$ ,  $C_2H_6O$  and  $C_3H_6O$  observed in irradiated methanol ices (CH<sub>3</sub>OH, CD<sub>3</sub>OD, CH<sub>3</sub><sup>18</sup>OH and <sup>13</sup>CH<sub>3</sub>OH).



**Figure S3.** Sublimation profiles recorded using ReTOF mass spectrometer at the mass-to-charge ratios correspond to the isotopomer of the products  $C_3H_8O$ ,  $C_4H_8O$ ,  $C_2H_4O_2$  and  $C_2H_5O_2$  observed in irradiated methanol ices (CH<sub>3</sub>OH, CD<sub>3</sub>OD, CH<sub>3</sub><sup>18</sup>OH and <sup>13</sup>CH<sub>3</sub>OH).



**Figure S4.** Sublimation profiles recorded using ReTOF mass spectrometer at the mass-to-charge ratios correspond to the isotopomer of the products  $C_2H_2O$ ,  $C_2H_4O$ ,  $C_2H_6O$  and  $C_3H_4O$  observed in irradiated methanol-carbon monoxide ices (CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-CO, CH<sub>3</sub><sup>18</sup>OH-C<sup>18</sup>O, <sup>13</sup>CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-<sup>13</sup>CO, CH<sub>3</sub><sup>18</sup>OH-CO, CH<sub>3</sub>OH-C<sup>18</sup>O).



**Figure S5.** Sublimation profiles recorded using ReTOF mass spectrometer at the mass-to-charge ratios correspond to the isotopomer of the products  $C_3H_6O$ ,  $C_3H_8O$ ,  $C_4H_8O$  and  $C_4H_{10}O$  observed in irradiated methanol-carbon monoxide ices (CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-CO, CH<sub>3</sub><sup>18</sup>OH-C<sup>18</sup>O, <sup>13</sup>CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-<sup>13</sup>CO, CH<sub>3</sub><sup>18</sup>OH-CO, CH<sub>3</sub>OH-C<sup>18</sup>O).



**Figure S6.** Sublimation profiles recorded using quadrupole mass spectrometer (QMS) at the mass-to-charge ratios correspond to  $C_2H_3^{18}O^+$ ,  $C_2H_4^{18}O^+$ ,  $C_2H_5^{18}O^+$ ,  $C_2H_6^{18}O^+$ ,  $C_2H_5^{18}O^+$ ,  $C_2H_5^{1$ 



**Figure S7.** Sublimation profiles recorded using ReTOF mass spectrometer at the mass-to-charge ratios correspond to the isotopomer of the products  $C_2H_6O_2$ ,  $C_3H_4O_2$ ,  $C_3H_6O_2$  and  $C_3H_8O_2$  observed in irradiated methanol ices (CH<sub>3</sub>OH, CD<sub>3</sub>OD, CH<sub>3</sub><sup>18</sup>OH and <sup>13</sup>CH<sub>3</sub>OH).



**Figure S8.** Sublimation profiles recorded using ReTOF mass spectrometer at the mass-to-charge ratios correspond to the isotopomer of the products  $C_2H_2O_2$ ,  $C_2H_4O_2$ ,  $C_2H_5O_2$  and  $C_2H_6O_2$  observed in irradiated methanol-carbon monoxide ices (CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-CO, CH<sub>3</sub><sup>18</sup>OH-C<sup>18</sup>O, <sup>13</sup>CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-<sup>13</sup>CO, CH<sub>3</sub><sup>18</sup>OH-CO, CH<sub>3</sub>OH-C<sup>18</sup>O).



**Figure S9.** Sublimation profiles of the calibration samples containing  $C_3H_4O$  isomer [Propenal; m/z = 56 amu] in CH<sub>3</sub>OH-CO (4:5) (Sample 10) ices is compared with the sublimation profiles of m/z = 56 amu recorded in irradiated CH<sub>3</sub>OH-CO (4:5) ices.



**Figure S10.** Sublimation profiles of the calibration samples containing  $C_3H_6O$  isomers [Acetone (CH<sub>3</sub>COCH<sub>3</sub>), Propanal (CH<sub>3</sub>CH<sub>2</sub>CHO) and allyl alcohol (CH<sub>2</sub>CHCH<sub>2</sub>OH); m/z = 58 amu] in (left) CH<sub>3</sub>OH (Samples 1, 3 and 5) and (right) CH<sub>3</sub>OH-CO (4:5) (Samples 2, 4 and 6) ices are compared with the sublimation profiles of m/z = 58 amu recorded in irradiated CH<sub>3</sub>OH and CH<sub>3</sub>OH-CO (4:5) ices.



**Figure S11.** Sublimation profiles of the calibration samples containing  $C_3H_8O$  isomers [1-propanol (CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH) and 2-propanol(CH<sub>3</sub>CH(OH)CH<sub>3</sub>); m/z = 60 amu] in (left) CH<sub>3</sub>OH (Samples 1 and 5) and (right) CH<sub>3</sub>OH-CO (4:5) (Samples 2 and 6) ices are compared with the sublimation profiles of m/z = 60 amu recorded in irradiated CH<sub>3</sub>OH and m/z = 68 amu recorded in irradiated CD<sub>3</sub>OD-CO (4:5) ices.



**Figure S12.** Sublimation profiles of the calibration samples containing  $C_4H_8O$  isomers [Butanal (CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHO), Butanone (CH<sub>3</sub>CH<sub>2</sub>COCH<sub>3</sub>) and *iso*-Butanal ((CH<sub>3</sub>)<sub>2</sub>CHCHO); m/z = 72 amu] in (left) CH<sub>3</sub>OH (Samples 3, 5 and 7) and (right) CH<sub>3</sub>OH-CO (4:5) (Samples 4, 6 and 8) ices are compared with the sublimation profiles of m/z = 72 amu recorded in irradiated CH<sub>3</sub>OH and m/z = 80 in CD<sub>3</sub>OD-CO (4:5) ices.



**Figure S13.** Sublimation profiles of the calibration samples containing  $C_4H_{10}O$  isomers [1-Butanol (CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH), 2-Butanol(CH<sub>3</sub>CH(OH)CH<sub>2</sub>CH<sub>3</sub>), *iso*-Butanol ((CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>OH) and *tert*-Butanol ((CH<sub>3</sub>)<sub>3</sub>COH); m/z = 74 amu] in CH<sub>3</sub>OH-CO (4:5) (Samples 2, 4, 6 and 8) ices are compared with the sublimation profiles of m/z = 74 amu recorded in irradiated CD<sub>3</sub>OD-CO (4:5) ices.



**Figure S14.** Sublimation profiles recorded using ReTOF mass spectrometer at the mass-to-charge ratios correspond to the isotopomer of the products  $C_3H_4O_2$ ,  $C_3H_6O_2$ ,  $C_3H_8O_2$  and  $C_4H_6O_2$  observed in irradiated methanol-carbon monoxide ices (CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-CO, CH<sub>3</sub><sup>18</sup>OH-C<sup>18</sup>O, <sup>13</sup>CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-<sup>13</sup>CO, CH<sub>3</sub><sup>18</sup>OH-CO, CH<sub>3</sub>OH-C<sup>18</sup>O).



**Figure S15.** Sublimation profiles recorded using ReTOF mass spectrometer at the mass-to-charge ratios correspond to the isotopomer of the products  $C_4H_8O_2$  and  $C_3H_6O_3$  observed in irradiated methanol ices (CH<sub>3</sub>OH, CD<sub>3</sub>OD, CH<sub>3</sub><sup>18</sup>OH and <sup>13</sup>CH<sub>3</sub>OH).



**Figure S16.** Sublimation profiles recorded using ReTOF mass spectrometer at the mass-to-charge ratios correspond to the isotopomer of the products  $C_4H_8O_2$ ,  $C_3H_4O_3$ ,  $C_3H_6O_3$  and  $C_4H_6O_3$  observed in irradiated methanol-carbon monoxide ices (CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-CO, CH<sub>3</sub><sup>18</sup>OH-C<sup>18</sup>O, <sup>13</sup>CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-<sup>13</sup>CO, CH<sub>3</sub><sup>18</sup>OH-CO, CH<sub>3</sub>OH-C<sup>18</sup>O).



**Figure S17.** Sublimation profiles recorded using ReTOF mass spectrometer at the mass-to-charge ratios correspond to the isotopomer of the products  $C_4H_8O_3$ ,  $C_4H_4O_4$ ,  $C_4H_6O_4$  and  $C_4H_8O_4$  observed in irradiated methanol-carbon monoxide ices (CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-CO, CH<sub>3</sub><sup>18</sup>OH-C<sup>18</sup>O, <sup>13</sup>CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-<sup>13</sup>CO, CH<sub>3</sub><sup>18</sup>OH-CO, CH<sub>3</sub>OH-C<sup>18</sup>O).



**Figure S18.** Sublimation profiles recorded using ReTOF mass spectrometer at the mass-to-charge ratios correspond to the isotopomer of the products  $C_5H_6O_4$ ,  $C_5H_8O_4$ ,  $C_5H_6O_5$  and  $C_5H_8O_5$  observed in irradiated methanol-carbon monoxide ices (CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-CO, CH<sub>3</sub><sup>18</sup>OH-C<sup>18</sup>O, <sup>13</sup>CH<sub>3</sub>OH-CO, CD<sub>3</sub>OD-<sup>13</sup>CO, CH<sub>3</sub><sup>18</sup>OH-CO, CH<sub>3</sub>OH-C<sup>18</sup>O).





2,3-Dihydroxy-4-oxopentanedial 2,3,4-Trihydroxypentanedial 2,3,5-Trihydroxy-4-oxopentanal

**Figure S19.** Chemical structures of the selected isomers of products with four and five oxygen atoms.





**Figure S20.** Summary of molecular formula observed in this study and their corresponding chemical structures with identified molecules are marked in bold.

## **References:**

J. M. Hollis, P. R. Jewell, F. J. Lovas, A. Remijan and H. Mollendal, *The Astrophysical Journal Letters*, 2004, **610**, L21.

2 W. M. Irvine, Astrophys. J., 1988, **335**, L89-L93.

3 M. A. Requena-Torres, J. Martín-Pintado, S. Martín and M. R. Morris, *Astrophys. J.*, 2008, **672**, 352.

J. M. Hollis, F. J. Lovas, A. J. Remijan, P. R. Jewell, V. V. Ilyushin and I. Kleiner, *Astrophys. J.*, 2006, **643**, L25-L28.

5 J. M. Hollis, A. J. Remijan, P. R. Jewell and F. J. Lovas, *Astrophys. J.*, 2006, **642**, 933. 6 A. Belloche, H. S. P. Muller, K. M. Menten, P. Schilke and C. Comito, *Astronomy and Astrophysics*, 2013, **559**, 47.

7 H. E. Matthews, Friberg, P., & Irvine, W. M., *ApJ*, 1985, **290**, 609.

J. N. Chengalur and N. Kanekar, *Astronomy and Astrophysics*, 2003, **403**, L43-L46.

J. E. Dickens, Irvine, W. M., Ohishi, M., Ikeda, M., Ishikawa, S., Nummelin, A., Hjalmarson, A., *ApJ*, 1997, **489**, 753.

10 B. E. Turner and A. J. Apponi, *Astrophys. J.*, 2001, **561**, L207-L210.

11 R. D. Brown, J. G. Crofts, P. D. Godfrey, F. F. Gardner, B. J. Robinson and J. B. Whiteoak, *Astrophys. J.*, 1975, **197**, L29-L31.

M. A. Requena-Torres, J. Martin-Pintado, A. Rodriguez-Franco, S. Martin, N. J.
Rodrmguez-Fernandez and P. De Vicente, *Astronomy and Astrophysics*, 2006, 455, 971-985.
D. M. Mehringer, L. E. Snyder, Y. Miao and F. J. Lovas, *The Astrophysical Journal*

Letters, 1997, **480**, L71.

14 D. T. Halfen, A. J. Apponi, N. Woolf, R. Polt and L. M. Ziurys, *Astrophys. J.*, 2006, **639**, 237-245.

15 B. Zuckerman, B. E. Turner, D. R. Johnson, F. J. Lovas, N. Fourikis, P. Palmer, M. Morris, A. E. Lilley, J. A. Ball and F. O. Clark, *Astrophys. J.*, 1975, **196**, L99-L102.

16 L. E. Snyder, F. J. Lovas, D. M. Mehringer, N. Y. Miao, Y.-J. Kuan, J. M. Hollis and P. R. Jewell, *Astrophys. J.*, 2002, **578**, 245.

17 J. M. Hollis, F. J. Lovas, P. R. Jewell and L. H. Coudert, *The Astrophysical Journal Letters*, 2002, **571**, L59-L62.

18 A. Belloche, R. T. Garrod, H. S. P. Muller, K. M. Menten, C. Comito and P. Schilke, *A&A*, 2009, **499**, 215-232.

19 B. Tercero, I. Kleiner, J. Cernicharo, H. V. L. Nguyen, A. Lopez and G. M. M. Caro, *The Astrophysical Journal Letters*, **770**, L13.

20 U. Fuchs, G. Winnewisser, P. Groner, F. C. De Lucia and E. Herbst, *The Astrophysical Journal Supplement Series*, 2003, **144**, 277.