Chemical Physics 409 (2012) 49-60

Contents lists available at SciVerse ScienceDirect

Chemical Physics

journal homepage: www.elsevier.com/locate/chemphys

SEVIER journal h

First detection of the silylgermylene (H₃SiGeH) and D4-silylgermylene (D₃SiGeD) molecules in low temperature silane–germane ices

Ada E. Tomosada^a, Seol Kim^a, Yoshihiro Osamura^b, Shu W. Yang^c, Agnes H.H. Chang^{c,*}, Ralf I. Kaiser^{a,*}

^a Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA

^b Kanagawa Institute of Technology, Atsugi 243-0292, Japan

^c Department of Chemistry, National Dong Hwa University, Shou-Feng, Hualien, Taiwan

ARTICLE INFO

Article history: Received 21 August 2012 In final form 7 October 2012 Available online 16 October 2012

Keywords: Ionizing radiation of energetic electrons Kinetic studies Online and *in situ* infrared spectroscopy Silylgermylene (H₃SiGeH) detection

ABSTRACT

The thermodynamically most stable GeSiH₄ isomer – silylgermylene (H₃SiGeH(X¹A')) – and its perdeuterated counterpart were detected for the first time via infrared spectroscopy in low temperature silane (SiH₄) – germane (GeH₄) and D4-silane – D4-germane ices upon irradiation with energetic electrons through the v_5 and v_3 fundamentals at 860 cm⁻¹ and at 1309 cm⁻¹, respectively. Our kinetic studies suggest that silylgermylene is formed via decomposition of chemically activated silylgermane (H₃SiGeH₃) precursors.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recent years have shown an increasing innovation in silicongermanium related devices such as semiconductors [1], silicongermanium nanowires [2,3], modulation doped field effect transistors (MODFET) [4,5], resonant tunneling diodes (RTD), infrared detectors [6,7], and light emitting diodes [8]. Silicongermanium semiconductors play a crucial role in the development of hetero-junction bipolar transistors (HBT) with HBTs contributing to vital progress in the wireless communication market [9,10]. HBTs are also highly resistant to a wide range of temperatures from 93 to 393 K and ionizing radiation from the Solar Wind and the Galactic Cosmic Radiation (GCR); these properties make HBTs important building blocks in space electronics design, since they require little radiation shielding [11]. In 1988, the very first functional HBT was reported employing molecular beam epitaxial (MBE) to grow silicon-germanium thin films onto the silicon substrate [12]. Since then, various techniques have been developed such as chemical vapor deposition (CVD) at low temperature for the growth of the SiGe epitaxial layer [13]. As of today, CVD technology presents the preferred technique for the production of silicon-germanium HBTs with the production processes still being refined. Here, germanium- and silicon-bearing species such as SiH_x and GeH_x (x = 1-3) and silicon-germanium clusters of various degree of hydrogenation, i.e., $GeSiH_x$ (x = 0-6), have been suggested to represent major growth species to produce germanium-silicon films. To further optimize the production processes, a firm identification of the growth-limiting reactions for the production of germanium-silicon films is required. This necessitates a rigorous knowledge of the time-dependent concentration profiles of silicon-germanium-bearing species in chemical vapor deposition processes as derived spectroscopically. However, the spectroscopy of GeSiH_x is largely undetermined.

What is currently known on properties of $GeSiH_x$ (x = 0-6) species? The majority of the computational and experimental studies focused on silvlgermane (H₃SiGeH₃). This molecule was first identified by Spanier and Mac-Diarmid using electric discharge of silane-germane gas mixtures [14]. Since then, a directed synthesis of silvlgermane has been reported [15]. Further experimental studies were conducted on the vibrational spectra and its deuterated counterparts both in the solid state and in the gas phase by Lannon et al. [16] and in the liquid state by Mohan et al. [17,18]. Bond lengths and bond angles in silvlgermane were characterized by Oberhammer et al. [19]. Further, Gaspar et al. [20] investigated the reactions of germanium atoms recoiling from the ⁷⁶Ge- $(n, 2n)^{75}$ Ge nuclear transformation in the gas phase. The authors proposed that silylgermane is formed through insertion reaction of a ⁷⁵GeH₂ transient species via Eq. (1). Also, Saalfeld et al. determined the enthalpy of formation of silylgermane to be 31 kJ mol⁻¹ [21]. Ab initio calculations of the vibrational frequencies were conducted as well [22,23]. Besides the silylgermane molecule, only limited studies were conducted on the GeSiH_x (x = 1-5) species. Ab initio calculations were carried out to characterize structural isomers of SiGeH₄. Grev et al. suggested silylgermylene,

^{*} Corresponding authors. Tel.: +1 808 956 5731; fax: +1 808 956 5908.

E-mail addresses: hhchang@mail.ndhu.edu.tw (A.H.H. Chang), ralfk@hawaii.edu (R.I. Kaiser).

^{0301-0104/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.chemphys.2012.10.002

H₃SiGeH(X¹A'), to be the lowest lying isomer, 26 kJ below the trans-bent doubly bonded germasilene, H₂SiGeH₂(X¹A') structure and 31 kJ lower than planar germasilene H₂SiGeH₂(X¹A₁) [24]. They also predicted the dissociation bond energy of the silicon-germanium single bond of silylgermane to be 93 kJ mol⁻¹ higher than the silicon-germanium double bond of silylgermylene due to the divalent state stabilization energy (DSSE).

$$^{75}\text{GeH}_2 + \text{SiH}_4 \rightarrow \text{H}_3^{75}\text{GeSiH}_3 \tag{1}$$

However, despite their potential role as key-growth species in germanium–silicon CVD processes, until now, no hydrogen deficient, neutral GeSiH_x (x = 1-5) species has been identified experimentally in the gas or condensed phase. This is in strong contrast to the dinuclear Si₂H_x and Ge₂H_x molecules, whose vibrational spectra have been characterized for disilyl (Si₂H₅), silylsilylene (H₃SiSiH), disilene (H₂SiSiH₂), and disilenyl (H₂SiSiH) [25,26], as well as digermyl (Ge₂H₅), digermene (Ge₂H₄), and digermenyl (Ge₂H₃) [27,28]. In this paper, we present the very first experimental evidence in combination with theoretical studies of the radiation-induced formation of silylgermane (H₃SiGeH₃) and of the hitherto elusive silylgermylene (H₃SiGeH) molecule along with their deuterated counterparts in electron-irradiated low temperature silane–germane matrices.

2. Experimental

Experiments were conducted in an ultrahigh vacuum (UHV) stainless steel chamber described in detail in Ref. [25]. The chamber can be pumped down to the medium 10^{-11} Torr range by a magnetically suspended turbo molecular pump backed by an oilfree scroll pump. Interfaced to the chamber is a two-staged closed cycle helium refrigerator holding a polished silver crystal. The crystal is cooled to 12.0 ± 0.2 K and acts as a substrate for the solid ices. A silane (SiH₄; 99.99%, Aldrich) – germane (GeH₄; 99.99%, Aldrich) gas mixture was prepared as a 1:1 mixture as was the D4-silane (99.99%, Aldrich) - D4-germane (99.99%, Voltaix) mixture. The gas mixture is introduced via a Balzers UDV 235 thermovalve into the main chamber by passing through a linear transfer mechanism and a gas capillary array (GCA), before condensing onto the crystal held at 12 K. The depositions were carried out at pressure of 10^{-7} Torr for 10 min. The absorptions of the silane-germane frost are complied in Table 1. The infrared absorption features of 2189 cm⁻¹ for silane and 2090 cm⁻¹ for germane were integrated and the ice thickness calculated. Using a modified Lambert-Beer relationship [29], densities of the individual solids of 0.77 g cm^{-3} and 1.75 g cm⁻³, for silane and germane, respectively, absorption coefficients of 4.7×10^{-17} and 5.5×10^{-17} cm molecules⁻¹ [30], the calculated optical thickness of the layers were 24 ± 15 and 29 ± 2 nm for silane and germane, respectively. The ices were irradiated at 12 K with 5 keV electrons generated in an electron source at beam currents of 1000 nA and 100 nA for 60 min by scanning the electron beam over the target area of 3.0 ± 0.2 cm². The Nicolet 6700 Fourier transform infrared spectrometer ($6000-400 \text{ cm}^{-1}$) was used for on-line and in situ monitoring of the chemical modifications of the solid samples; the spectrometer operates in an absorption-refection-absorption mode with reflection angle α = 75° and resolution 4 cm⁻¹.

3. Theoretical methods

The energetics of isomers of $GeSiH_x$ (x = 1-6) were characterized by *ab initio* electronic structure calculations. The optimized geometries and harmonic frequencies were computed at the level of the hybrid density functional theory, B3LYP/6-311G(d,p) [31–34]; their energies were refined further at the CCSD(T)/6-311G(d,p) level of

Table 1

Infrared absorptions of the silane, D4-silane, germane and D4-germane frost. (sh: shoulder) α , β_{λ} denote lattice modes of the samples.

Frequency (cm ⁻¹)	Frequency (cm ⁻¹)	Assignment	Ref.
Silane	D4-silane		
4351		2v ₃	[25,26]
4284	3118	$v_1 + v_3$	[25,26]
3128	2246	$v_2 + v_3$	[25,26]
3065	2173	$v_3 + v_4$	[25,26]
2189	1596	$v_3 + \alpha$	[25,26]
2167	1583	<i>v</i> ₃	[25,26]
1870	1354	$v_2 + v_4 + \alpha$	[25,26]
1848	1340	$v_2 + v_4$	[25,26]
960	683	<i>v</i> ₂	[25,26]
913	674	$v_4 + \alpha$	[25,26]
881	652	V4	[25,26]
Germane	D4-germane		
4193		2v ₃	[27,28]
4123	2981	$v_1 + v_3$	[27,28]
3003	2158 (sh)	$v_2 + v_3 v_3 + \alpha$	[27,28]
2109	1520	$v_3 + \beta$	[27,28]
2090	1507	$v_3 + \alpha$	[27,28]
1722	1233	$v_2 + v_4$	[27,28]
960	683	$v_4 + \gamma$	[27,28]
915	660	<i>v</i> ₂	[27,28]
823	616	$v_4 + \beta$	[27,28]
803	596	$v_4 + \alpha$	[27,28]
795	575	V4	[27,28]

theory with B3LYP/cc-pVTZ zero-point energy corrections [35–38]. While it is found to be a transition state on the surface of B3LYP/6-311G(d,p), with MP2/6-311G(d,p) the geometry and frequencies of the isomer H_3 SiGeH(X¹A') were obtained. The GAUSSIAN03 program [39] was employed in the calculations.

4. Theoretical results

The relative energies for the optimized geometric structures for SiGeH_x (x = 1-6) species are compiled in Table 2. In order to identify the silicon–germanium bearing compounds and their deuterated counterparts formed in the silane–germane ices upon electron irradiation, the vibrational fundamentals of the SiGeH_x (x = 1-6) as well as their integrated absorption coefficients were computed as provided in Table 3. The geometries of the SiGeH_x (x = 1-6) species are depicted in Fig. 1.

In preceding studies done by Sillars et al. [25] and Carrier et al. [28] the optimized geometries of the lowest energy structures were the staggered conformation for the Si_2H_6 and Ge_2H_6 of the x = 6 species, as was found for the SiGeH₆ in the present study (Fig. 1(a)). However, in the previous studies, a higher energy Si_2H_6 isomer (H₃SiHSiH₂) was found; this structure formally presents a complex between the silane (SiH₄) and the SiH₂ radical unit. The corresponding isomer for the Ge₂H₆ species, H₃GeHGeH₂ was also reported. In this investigation, employing the B3LYP/6-311G(d,p), a second SiGeH₆ isomer was also found; but unlike the H₃GeHGeH₂(X¹A) structure, which indicates that a vacant p-orbital of the Ge₁ unit is acting as an electron acceptor of the electrons of the Ge–H bond in GeH₄, the H₃SiHGeH₂(X¹A) presents a monobridged structure.

Considering x = 5 species, the lowest energy isomer for SiGeH₅ species presents the H₃SiGeH₂(X^2A') molecule, which lies 17.1 kJ mol⁻¹ below the H₂SiGeH₃(X^2A') (Fig. 1(b)). This energy difference can be explained by the larger silicon–hydrogen bond energy, typically 378 kJ mol⁻¹ [40], compared to the germane–hydrogen bond energy of around 343 kJ mol⁻¹ [41]. In previous studies by Sillars et al. [25] and Carrier et al. [28] the optimized geometries of the lowest energy isomers for the Si₂H₅ and Ge₂H₅

Table 2 The computed relative energies of SiGeH_x isomers (x = 1-6).

Species	B3LYP method ^(a) (kJ mol ⁻¹)	CCSD(T) method ^(b) (kJ mol ⁻¹)
SiGeH ₆		
H ₃ SiGeH ₃ (¹ A ₁) [1]	0.0	0.0
$H_3SiHGeH_2$ (¹ A) [2]	127.5	133.8
SiGeH₅		
$H_3SiGeH_2(^2A')[1]$	0.0	0.0
$H_2SiGeH_3(^2A')[2]$	16.3	17.1
SiGeH₄		
$H_{3}SiGeH(^{1}A')[1]$	0.0	0.0
$H_2SiGeH_2(^1A')[2]$	23.7	15.0
$HSiGeH_3(^1A')[3]$	68.9	64.3
trans-HSiHHGeH (¹ A') [4]	77.2	76.8
cis-HSiHHGeH (¹ A') [5]	85.9	86.2
SiGeH ₃		
$H_3SiGe(^2A'')[1]$	0.0	0.0
$H_2SiGeH (^2A'')[2]$	17.5	31.3
trans-HSiHGeH (² A) [3]	51.6	62.8
$HSiGeH_2$ (² A) [4]	56.9	65.6
HSiHHGe (² A') [5]	76.6	78.8
cis-HSiHGeH (² A) [6]	75.8	87.9
SiGe H ₃ (² A") [7]	88.4	87.9
SiHHGeH (¹ A') [8]	98.5	104.5
SiGeH ₂		
SiH ₂ Ge (¹ A') [1]	0.0	0.0
$H_2SiGe(^1A_1)[2]$	16.3	17.1
HSiHGe (¹ A') [3]	23.5	23.4
SiHGeH (¹ A') [4]	55.5	51.5
HSiGeH (¹ A') [5]	77.8	64.7
SiGeH ₂ (¹ A ₁) [6]	74.2	72.5
SiGeH		
SiHGe (² A') [1]	0.0	0.0

Notes: optimized structures of SiGeH_x isomers are shown in Fig. 1.

^(a) Zero-point energies corrected at the same B3LYP/6-311G(d,p) level.

^(b) CCSD(T)/6-311G(d,p) energies based on the B3LYP/6-311G(d,p) optimized structures.

species were H_3SiSiH_2 and H_3GeGeH_2 , respectively. It is interesting to note that although the $HSiHSiH_3$ and $HGeHGeH_3$ hydrogenbridged isomers were found to be higher energy isomers, the corresponding $H_3SiHGeH$ or $H_3GeHSiH$ geometries could not be identified in the present investigation.

We now compare the optimized geometries of the lowest energy isomers of Si_2H_x , Ge_2H_x , and $SiGeH_x$ (x = 4,3). In previous works by Sillars et al. [26] and Carrier et al. [27] the trans-bent $H_2SiSiH_2(X^1A_g)$ as well as the trans-bent $H_2GeGeH_2(X^1A_g)$ were found to be the lowest energy isomers for x = 4. In the present work, the silylgermylene $H_3SiGeH(X^1A')$ shown in Fig 2(c) ranges 15.0 kJ mol⁻¹ below the trans-bent H₂SiGeH₂(X¹A') utilizing the CCSD(T)/6-311G(d,p) level of theory (Table 2). This can be rationalized by Grev et al. [24] Using their calculated bond energies, the isomerization of the germasilene (H2GeSiH2) to silylgermylene (H_3SiGeH) is exoergic by 34 kJ mol⁻¹. The isomerization energy of H_2SiSiH_2 to H_3SiSiH is however endoergic by 12 kJ mol⁻¹. For x = 3, a similar pattern emerges. The H₂SiSiH [26] and H₂GeGeH [27] isomers represent the lowest energy structures, whereas in the present study, the H₃SiGe has the lowest energy due to the stronger silicon-hydrogen bond as compared to the germaniumhydrogen bond, lying 31.3 kJ mol⁻¹ below the H₂SiGeH isomer. The di-bridged SiH₂Ge structure has a similar geometry as the lowest energy Ge₂H₂ and Si₂H₂ isomers [42,43]. The mono-bridged SiHGe is the only optimized geometry for the x = 1. The bridged Ge₂H was studied by Gopakumar et al. [44].

5. Experimental results

The infrared spectra of the silane–germane frosts before the irradiation are shown in Fig 2(a). After one hour of irradiation

new absorption features appeared. These were first assigned to the known Si₂H_x and Ge₂H_x (x = 1-6) species along with their deuterated counterparts according to the experimental literature values [25-28]. The infrared spectroscopic studies confirmed previous works done on the pure silane [25,26] and germane [27,28] matrices. The Si₂H₆ v_6 at 820 cm⁻¹, H₃SiSiH₂ v_6 at 844 cm⁻¹ [25], H₃SiSiH v_5 869 cm⁻¹, H₂SiSiH v_5 636 cm⁻¹ [26] as well as their deuterated counterparts $Si_2D_6 v_5$ at 1531 cm⁻¹, $D_3SiSiD_2 v_6$ at 621 cm⁻¹ [25], $D_3SiSiD v_5$ at 635 cm⁻¹, $D_2SiSiD v_4$ at 683 cm⁻¹ [26], as compiled in Table 4, were identified in the silane–germane ices. Also, the $Ge_2H_6 v_6$ at 752 cm⁻¹ and v_{11} at 869 cm⁻¹, H₂GeGeH₃ v_6 at 766 cm⁻¹ [28], H₃GeGeH v_5 at 780 cm⁻¹, H₂GeGeH v_3 at 1819 cm⁻¹ [27], as well as their deuterated counterparts Ge_2D_6 v_6 at 530 cm⁻¹ and v_{11} at 626 cm^{-1} , D₂GeGeD₃ v_4/v_{12} at 609 cm^{-1} [28], D₂GeGeD₂ v_5 at 1481 cm⁻¹, D₃GeGeD v_5 at 557 cm⁻¹, D₂GeGeD v_3 at 1319 cm⁻¹ [27] were monitored as shown in Table 4.

Besides the Ge_2H_x and Si_2H_x species as outlined above, additional absorption features were present in the irradiated samples (Fig. 2), which could not be attributed to any of the Ge_2H_x and Si_2H_x (x = 1-6) molecules. Therefore, we compared scaled, calculated absorption features of various SiGeH_x (x = 1-6) (Table 3; Fig. 1) molecules with the experimental observations (Fig. 2). These absorption peaks of the newly observed molecules are compiled in Table 5. The infrared spectroscopic studies suggest the formation of the silylgermane (H₃SiGeH₃(X¹A₁)) (Fig. 1(a)) during the one hour irradiation of the silane (SiH₄) – germane (GeH₄) frost at 12 K. The absorption features at 2062 cm⁻¹, as shown in Fig 2(b), was assigned to the v_2 mode as predicted via B3LYP/6-311G(d,p) theoretical calculations (Table 3) utilizing a recommended scaling factor of 0.97. Note that the harmonic approximation employed for

Table 3

Unscaled vibrational frequencies (cm⁻¹) and infrared intensities (km mol⁻¹) for SiGeH_x and SiGeD_x (x = 1-6) species obtained with B3LYP/6-311G(d,p). Note: [1] H₃SiGeH and D₃SiGeD are evaluated with MP2/6-311G(d,p).

Mode		Frequency	Intensity	Frequency	Intensity	Characterization
[1]		H3SiGeH3 (¹ A1)		D_3SiGeD_3 (¹ A ₁)		
<i>v</i> ₁	a ₁	2217	62.26	1577	36.60	SiH₃ sym. str.
<i>v</i> ₂	a ₁	2126	79.36	1507	42.05	GeH ₃ sym. str.
<i>v</i> ₃	a ₁	903	118.11	667	84.99	SiH ₃ umbrella
<i>V</i> 4	a1	797	412.64	575	195.95	GeH ₃ umbrella
V5	d1	344	0.32	330	1.19	Gesi str.
V6 V7	a2 e	2229	113 39	1611	63 37	SiH_2 asym str
V8	e	2134	110.47	1522	57.99	GeH_3 asym. str.
v ₉	e	954,954	53.68,53.68	684,684	28.83,28.83	SiH ₃ deformation
v_{10}	e	894,894	27.61,27.61	635,635	12.88,12.88	GeH ₃ deformation
V11	e	602,602	0.00,0.00	451,450	0.01,0.01	GeH ₃ , SiH ₃ rock
V ₁₂	e	374,374	22.12,22.12	267,267	11.04,11.04	GeH ₃ , SiH ₃ rock
V ₁₃	e	2229	113.40	1011	57.00	SIH_2 asymptotic str.
V14	C	$\mathbf{U} \mathbf{S} \mathbf{U} \mathbf{C} \mathbf{c} \mathbf{U} (^{1} \mathbf{A})$	110.47	D SiDCaD (¹ A)	57.55	Genz asym. str.
[2]		111	0.00		0.17	CaSi ata
V1 V2	d a	111	0.89	90	0.17	Gesi str. Torsion
V2 V2	a	188	0.50	135	0.22	Torsion
v ₄	a	382	32.29	285	16.71	GeH_2 , SiH ₄ rock
V ₅	a	554	12.07	400	4.57	GeH ₂ , SiH ₄ rock
v_6	a	577	41.57	420	24.69	GeH ₂ , SiH ₄ rock
v ₇	a	873	134.23	628	37.51	SiH ₃ umbrella
V8	a	886	276.37	650	165.00	SiH ₃ umbrella
V9 Via	d D	922	45.49	679	20.11	SiH, deformation
V10 V11	a	958	42.40	687	35.00	SiH ₄ deformation
V12	a	1120	47.43	801	26.49	SiH ₂ scissor
v ₁₃	a	1867	378.08	1331	169.72	GeH str.
v ₁₄	a	1880	255.34	1346	160.03	Bridge HSi str.
v ₁₅	а	1902	309.60	1355	164.34	GeH ₂ asym. str.
V ₁₆	a	2247	68.94	1602	39.72	SiH_3 sym. str.
V17	d D	2275	53.03	1661	36.99	SIH_3 asymits str. SiH_2 asym str
[1]	a	$H SiCoH (^2\Lambda/)$	55.05	D SiCaD (² M)	50.55	Ship asym. str.
	-/	n331Gen2 (A)	02.24	D ₃ SIGED ₂ (A)	F 4 22	Cill course sta
V1 V2	d' 2'	2227	83.34 84.57	1604	54.32 42.59	SIH_3 asylli. Str. SiH_2 sym_str
V2 V3	a'	2079	106.49	1477	54.97	GeH ₂ sym. str.
v ₄	a'	948	56.27	680	23.05	SiH ₃ deformation
v_5	a'	900	118.58	661	100.93	SiH3 umbrella
v ₆	a'	837	340.77	601	142.34	GeH ₂ scissor
v ₇	a'	569	14.07	424	6.59	GeH_2 umbrella, SiH ₃ rock
<i>v</i> ₈	a' 2'	393	15.55	2/3	8.44	GeH_2 umbrella, SIH ₃ rock
V9 V10	a a″	2236	105.13	1616	58.94	SiH ₂ asym. str.
v ₁₁	a″	2108	133.16	1504	68.17	GeH_2 asym. str.
v ₁₂	a″	950	44.17	681	32.55	SiH ₃ deformation
v ₁₃	a″	604	0.93	450	0.36	GeH ₂ rock, SiH ₃ rock
<i>v</i> ₁₄	a″	373	83.34	265	8.74	GeH ₂ rock, SiH ₃ rock
V15	ď″	112	0.12	/9 D C C D (² 11)	0.00	TOISION
[2]	.,	H ₂ SiGeH ₃ (*A')	02.02	D ₂ SiGeD ₃ (*A')	40.14	C'II and a
<i>v</i> ₁	a'	2184	82.86	1562	46.14	SIH_2 sym. str.
V2 V2	ď a/	2132	97.30 106.94	1317	52 39	GeH str
• 3 V⊿	a′	927	76,96	672	41.49	SiH ₂ scissor
v ₅	a′	888	39.32	632	20.27	GeH ₃ deformation
v ₆	a′	803	299.68	577	151.39	GeH₃ umbrella
v ₇	a'	583	30.87	440	17.22	GeH ₃ rock, SiH ₂ umbrella
v ₈	a′	400	18.78	285	9.24	GeH_3 rock, SiH_2 umbrella
V9	a' 2"	342 2212	U./5 125.80	334 1600	1.69	Gesi str. SiH- asym ctr
V10 V11	a" a"	2212	97.84	1525	52.72	GeH_2 asym. str.
v 11 V 12	a″	891	32.2	633	16.39	GeH ₃ deformation
v ₁₃	a″	600	0.71	446	0.39	GeH ₃ , SiH ₂ rock
v ₁₄	a″	382	16.93	271	8.47	GeH ₃ , SiH ₂ rock
v ₁₅	a″	123	0.40	87	0.20	Torsion
[1]		$H_3SiGeH(^1A')$		D ₃ SiGeD (¹ A')		
<i>v</i> ₁	a'	2302	133.49	1661	75.76	SiH ₃ asym. str.
<i>v</i> ₂	a'	2276	94.78	1621	52.76	SiH ₃ sym. str.

Table 3 (continued)

Mode		Frequency	Intensity	Frequency	Intensity	Characterization
<i>v</i> ₃	a'	1987	270.90	1415	136.99	GeH str.
v4	a'	976	73.02	701	58.54	SiH ₃ deformation
V5	a'	912	345.99	675	150.81	SiH ₃ umbrella
v ₆	a'	697	44.34	511	23.38	GeH bend, SiH ₃ deformation
v ₇	a'	412	23.35	317	16.51	GeH bend, SiH ₃ deformation
v ₈	a'	318	8.06	286	7.51	GeSi str.
V9	a″	2285	122.81	1651	71.63	SiH ₃ asym. str.
v ₁₀	a″	999	53.87	716	29.30	SiH ₃ deformation
V11	a″	391	34.58	285	18.18	SiH ₃ deformation
v ₁₂	a″	92	5.86	66	2.92	Torsion
[2]		H SiCoH $(1A)$		\mathbf{D} SiCoD $(^{1}\mathbf{A}')$		
[2]		H2SIGEH2 (A)		$D_2 SIGE D_2 (R)$		
v_1	a'	2209	75.39	1581	41.20	SiH ₂ sym. str.
<i>v</i> ₂	a'	2119	84.07	1506	44.50	GeH ₂ sym. str.
<i>v</i> ₃	a'	948	92.52	692	44.53	SiH ₂ scissor
V4	a'	876	109.09	626	57.86	GeH ₂ scissor
<i>v</i> ₅	a'	502	1.44	428	1.94	GeSi str.
v_6	a'	404	37.07	310	4.97	SiH ₂ out of plane
v ₇	a'	353	2.78	281	15.47	GeH ₂ out of plane
v ₈	a″	2236	97.30	1617	50.69	SiH ₂ asym. str.
<i>v</i> ₉	a″	2140	94.06	1527	49.16	GeH ₂ asym. str.
v ₁₀	a″	587	0.05	438	0.03	SiH ₂ , GeH ₂ rock
v ₁₁	a″	506	0.06	358	0.03	Torsion
v ₁₂	a″	331	17.02	235	8.59	S_1H_2 , GeH_2 rock
[3]		HSiGeH ₃ (¹ A')		$DGeCD_3$ (¹ A')		
<i>v</i> ₁	a'	2119	162.34	1510	94.28	GeH ₃ asym. str.
<i>v</i> ₂	a'	2086	111.7	1481	61.03	GeH ₃ sym. str.
<i>v</i> ₃	a′	2038	176.7	1466	78.10	SiH str.
<i>v</i> ₄	a'	879	39.38	624	21.36	GeH ₃ deformation
v ₅	a'	793	221.28	570	105.88	GeH₃ umbrella
v ₆	a'	699	59.51	514	38.26	SiH bend
v ₇	a'	397	17.61	273	6.11	GeH ₃ deformation
v ₈	a'	311	4.53	320	7.46	GeSi str.
v ₉	a″	2095	122.5	1494	64.56	GeH₃ asym. str.
v ₁₀	a″	895	27.57	637	14.34	GeH ₃ deformation
V11	a″	357	23.19	256	12.00	GeH ₃ deformation
v ₁₂	a″	77	6.55	55	3.32	Torsion
[4]		trans-HSiHHGeH (' ¹ A')	trans-DSiDDGeD (¹ A')	
[•]			,	1 100	,	
<i>v</i> ₁	a′	2055	232.48	1478	120.35	SiH str.
<i>v</i> ₂	a'	1894	261./1	1349	135.35	GeH str.
<i>v</i> ₃	a'	1625	185.23	1155	104.03	SIHH sym. str.
<i>v</i> ₄	ď	1287	073.23	917	340.54	Genn synn, str.
V5	ď 2	843	97.00	612	40.62	SIH Deliu Call band
V ₆	d 2/	737	40.00	212	50.27	Gen bellu SiCo etr
V7	d 2/	264	0.10	312	1.47	SilluCo out of plano
V8	a 2″	204	20.88	1039	2.38	SiHH asym str
rg V10	a 2″	1001	10 07	776	10.20	CeHH sevm str
v 10 V 11	a a″	850	7 93	608	3 77	Torsion
V12	a″	628	10.65	448	5.17	Torsion
[5]		<i>cis</i> -HSiHHGeH (¹ A	()	cis-DSiDDGeD (¹ A	()	
	2/	2072	107 17	1401	120.40	Cill etr
<i>v</i> ₁	d' 2'	2073	237.17	1491	120.49	SITI SU.
V2	d' 2	1927	213.99	13/3	114./0	Sill sum str
v3 V.	d 2	1090	127.00	002	70.02 5/13 0/	CeHH sum str
v4 V-	a 2'	862	41.85	502	21 01	SiH CeH bend
V5	a 2'	600	41.0J 50.71	1025	21.01	SiH CeH bend
V6	a 2'	370	0.10	492 767	0.00	SiHHCe out of plane
V7	a 2'	305	3.18	304	4.15	SiCe str
V8 Vo	a 2″	1262	26.63	977	14 35	SiHH zevm etr
Vg	a 2"	1101	20.05	783	12.84	CeHH asym str
V 10	a″	837	13 14	596	6.06	Torsion
V12	a″	581	0.95	415	0.59	Torsion
[1]	u	H₃SiGe (² A″)	0.00	D_3 SiGe (² A'')	0.55	10151011
V1	a'	2186	123 80	1572	70.83	SiH ₂ asym. str
V2	a′	2157	83.10	1541	45.16	SiH ₃ sym. str.
V3	a'	954	65 70	685	40.66	SiH ₃ deformation
v_{Δ}	a′	863	297.12	638	138.86	SiH ₃ umbrella
V5	 a′	348	20.20	305	13.78	SiH ₃ rock
v ₆	a'	267	14.20	217	11.69	SiGe str.
V7	a″	2190	117.16	1582	65.45	SiH ₃ asym. str.
					-	

(continued on next page)

Mode		Frequency	Intensity	Frequency	Intensity	Characterization
v ₈	a″	916	45.00	657	23.27	SiH ₃ deformation
V9	a″	367	6.54	270	3.14	SiH ₃ rock
[2]		$H_2SiGeH(^2A'')$		$D_2SiGeD(^2A'')$		
<i>v</i> ₁	a'	2204	123.72	1593	66.84	SiH ₂ asym. str.
<i>v</i> ₂	a'	21/9	123.16	1560	63.40	SIH_2 sym. str.
V3	ď 2	1885	254.45	1342	128.19	Gen str.
V4	a 2'	900 662	29.93	487	18.02	CeH bend SiHa rock
Ve	a'	343	11.30	336	10.77	SiGe str.
V ₇	a'	374	7.26	269	4.75	SiH ₂ rock
v ₈	a″	360	5.95	264	3.48	Out of plane
v ₉	a″	160	0.25	116	0.15	Torsion
[3]		HSiGeH ₂ (² A)		DSiGeD ₂ (² A)		
<i>v</i> ₁	a	2087	191.24	1489	118.33	GeH asym. str.
<i>v</i> ₂	a	2056	135.31	1460	72.83	GeH sym. str.
<i>v</i> ₃	a	2037	150.18	1466	52.42	SiH str.
<i>v</i> ₄	a	882	83.09	631	39.18	GeH ₂ scissor
v ₅	a	674	29.13	494	18.97	SiH bend
<i>v</i> ₆	a	394	2.76	266	2.75	Out of plane
V7	a	346	10.25	249	5.47	GeH ₂ rock
V8	a	340	7.08	351	3.45	SiGe Str.
V9	d	129	7.00	118	4.08	TOISION
[4]		trans-HSiHGeH (²	A)	trans-DSiDGeD (2	A)	
<i>v</i> ₁	a	2089	195.47	1503	102.12	SiH str.
<i>v</i> ₂	a	1939	221.80	1381	113.27	GeH str.
V3	a	1506	118.17	1080	59.57	Bridge H str.
V4	a	954	101.42	679	50.02	Bridge H shift
V5	d	700	8.18	507	3.14	Bridge H shift
V ₆	d	507	52.60 10.51	439	6.06	HSiCeH torsion
V7 V2	a 2	351	5 20	337	2.25	SiCe str
Vo	a	324	0.57	238	1.53	HSiGeH bend
, g	u	521 	0.57	250 	1.55	holden bena
[5]		cis-HSIHGEH (A)		CIS-DSIDGED (A)		
<i>v</i> ₁	a	2087	185.00	1503	93.92	SiH str.
<i>v</i> ₂	a	1841	206.25	1311	104.90	GeH str.
<i>v</i> ₃	a	1548	129.23	1110	64.06	Bridge H Str.
V4	d D	755	27.10	536	14 59	Bridge H shift
V5	d a	585	48.86	431	31 19	HSiCeH bend
V6 V7	a	506	19 51	377	10.55	HSiGeH torsion
Vs	a	373	3.94	264	2.43	HSiGeH bend
v ₉	a	311	6.94	299	4.32	SiGe str.
[6]		HSiHHGe (² A')		DSiDDGe(² A')		
V1	a'	2044	183.03	1471	96.48	SiH str.
v ₂	a′	1641	173.49	1167	95.36	Bridge HH sym. str.
<i>v</i> ₃	a′	1197	641.1	855	322.39	HGeH sym. str.
v_4	a'	815	88.24	589	40.65	HSi bend
v_5	a'	346	1.90	316	5.51	HSiHH deformation
v_6	a'	249	4.15	192	1.56	HSiHH deformation
v ₇	a″	1467	26.62	1051	14.20	Bridge HH asym. str.
V8	a″	1034	17.00	735	8.74	HGeH asym. str.
V9	a"	811 SHUG-U (240)	12.34	580 SIDDC-D (241)	5.82	HSIHH deformation
[/]	2'	3IHHGEH (~A')	208.9	3UDUGED (~A')	152.24	Coll str
<i>v</i> ₁	d' 2'	1803	298.8 131.61	1320	133.24	Gen Str. Bridge HH sym. str
v2 V2	a 2'	1190	419.46	1159 <u>8</u> 45	209 22	HCeH sym str
×3 V₄	a'	697	91 04	506	48 93	HGe bend
V 5	a'	499	1.59	397	0.35	HGeHH deformation
v ₆	a′	109	0.03	97	0.02	HGeHH deformation
v ₇	a″	1472	74.39	1054	37.9	Bridge HH asym. str.
v ₈	a″	1015	3.04	720	1.50	HGeH asym. str.
v ₉	a″	358	0.51	255	0.22	HSiHH deformation
[8]		SiGeH ₃ (² A")		SiGeD ₃ (² A")		
<i>v</i> ₁	a'	2089	139.92	1486	73.66	GeH ₃ asym. str.
V2	a′	2054	95.74	1460	49.00	GeH_3 sym. str.
<i>v</i> ₃	a'	887	46.2	631	24.35	GeH ₃ deformation
v_4	a'	785	235.17	564	116.32	GeH ₃ umbrella
<i>v</i> ₅	a'	335	13.15	320	8.43	GeSi str.
v_6	a'	267	19.32	203	12.81	GeH_3 rock

Table 3	(continued)
---------	-------------

Mode		Frequency	Intensity	Frequency	Intensity	Characterization
v ₇	a″	2089	142.37	1490	74.19	GeH ₃ asym. str.
V8	a″	860	31.00	612	15.79	GeH ₃ deformation
v9	a″	341	8.22	248	4.12	GeH ₃ rock
[1]		SiH ₂ Ge (¹ A')		SiD ₂ Ge (¹ A')		
<i>v</i> ₁	a′	1554	40.12	1107	23.36	H-H str.
V2	a'	1054	304.79	762	148.16	SiH ₂ str.
V3	a'	870	75.53	628	43.65	GeH_2 str.
V4	a'	406	1.40	398	2.08	Ge-Si str.
V5	a″	1481	35.82	1058	18.22	HGeH rock
v ₆	a″	928	0.01	661	0.00	HSi, HGe str.
[2]		$H_2SiGe(^1A_1)$		$D_2SiGe(^1A_1)$		
V1	a,	2187	61.56	1565	31.10	SiH ₂ sym. str.
v ₂	-1 a1	895	65 75	659	25.56	SiH ₂ scissor
V2	a1	410	11 36	394	14 13	SiGe str
V.	b,	331	2.46	248	1 46	Out of plane
. 4 Vr	b _n	2217	79.92	1604	44 31	SiH ₂ asym str
VG	b_2	254	22.14	188	11.88	SiH ₂ rock
[3]	02	HSiHCe $(^{1}A')$	22.14	DSiDCe $(^{1}A')$	11.00	Ship lock
[2]	,	2450	05.00	1550	10.05	
<i>v</i> ₁	a'	21/8	85.60	1570	40.35	SIH Str.
<i>v</i> ₂	a'	1663	74.34	1192	36.31	Bridge HSi str.
<i>v</i> ₃	a'	985	108.22	702	50.30	Bridge H-shift
<i>v</i> ₄	a'	484	17.50	464	19.71	SiGe str.
v ₅	a'	395	7.98	300	4.15	SiH bend
v ₆	a″	123	35.09	90	18.44	Torsion
[4]		SiHGeH (¹ A')		SiDGeD (¹ A')		
<i>v</i> ₁	a′	2069	131.61	1475	64.78	GeH str.
<i>v</i> ₂	a'	1562	96.73	1114	49.10	Bridge H str.
<i>v</i> ₃	a'	995	107.01	716	58.82	bridge H-shift
<i>v</i> ₄	a'	533	2.25	483	4.28	SiGe str.
V5	a'	417	5.64	332	1.68	GeH bend
v ₆	a″	130	34.66	93	17.49	Torsion
[5]		SiGeH ₂ (¹ A ₁)		SiGeD ₂ (¹ A ₁)		
V1	ā1	2075	63.99	1475	32.15	GeH_2 sym. str.
Va	a1	818	51.39	586	23.12	GeH ₂ scissor
v2	a1	429	5.50	427	7.17	GeSi str.
VA	b1	285	2.81	209	1.49	Out of plane
· 4 Vr	b ₂	2101	88 52	1499	46.20	GeH ₂ asym str
v ₆	b_2	2101	20.63	156	11.04	GeH ₂ rock
[6]	- 2	HSiGeH (¹ A')		DSiGeD (¹ A')		2
 V.	a′	2157	84 83	1552	40.94	SiH str
۲1 ۷-	a 2/	2137	07.0J 87.0G	1/0/	10.34	CoH str
v2	a 2/	2000	02.00	1404	/1	Gen su.
<i>v</i> ₃	d 2/	014	0.48	403	0.01	Sin, Gen Della
V4	ď	449	0.39	440	0.08	SiGe Str.
V5	a'	196	36.39	140	18.5/	Gen, SIH bend
<i>v</i> ₆	a"	167	54.82	119	28.05	IOTSION
[1]		SiHGe (² A")		SiDGe (² A")		
v_1	a′	1454	70.07	1042	36.02	SiH str.
<i>v</i> ₂	a'	868	105.11	621	52.60	GeH str.
V3	a'	401	0.62	400	0.94	SiGe str.

calculations of vibrational frequencies typically overestimates experimental frequencies depending on the method of *ab initio* calculations (by 2–4% at the B3LYP level). To correct for this deficiency, a useful approach widely utilized is the incorporation of scaling factors, i.e., multiplying the calculated frequency with the scaling factor [45–46]. After the irradiation, the ices were kept at 12 K for one hour and then warmed up at 0.5 K min⁻¹ to 293 K. At 22 K, the 2062 cm⁻¹ absorption feature split into two peaks, 2072 and 2058 cm⁻¹. These two frequencies were assigned in a previous study to solid state silylgermane [14] and were noted as very strong absorption features. This feature is still observable at 72 K; this implies that these absorptions belong to a stable compound such as the H₃SiGeH₃. The detection of the silylgermane was also confirmed in the deuterated silane–germane ices. An absorption feature at 1462 cm⁻¹, shown in Fig 2(d), was observed corresponding to the v_2 vibrational modes according to the B3LYP/ 6-311G(d,p) harmonic frequencies compiled in Table 3, also using a scaling factor of 0.97. This peak is observed at 72 K again implying that this absorption feature belongs to a stable, closed shell compound.

Further investigation of the irradiated silane–germane ice led to the detection of a 550 cm⁻¹ band. This feature was observed after 50 min of irradiation and disappears after 60 min. This peak was tentatively assigned to the H₂GeSiH₃(X²A') ν_7 , GeH₂ umbrella,

Fig. 1. Optimized structures of (a) SiGeH₆, (b) SiGeH₅, (c) SiGeH₄, (d) SiGeH₂, (e) SiGeH₂, and (f) SiGeH species at B3LYP/6-311G(d, p) level. The bond lengths and angles are given in units of angstroms and degrees, respectively. Relative energies of SiGeH_x isomers are compiled in Table 2.

SiH₃ rock mode, using the B3LYP calculated harmonic frequencies and scaling factor of 0.97. This absorption feature has a low calculated intensity of 14.07 km mol⁻¹ which predicts that this peak would be quite hard to observe. The assignment was confirmed in deuterated silane–germane ice, and a 642 cm⁻¹ peak, shown in Fig 2(e) was found, that increased in size after 40 min of irradiation. This was assigned to the D₂GeSiD₃ (X²A') according to the B3LYP calculated frequency of the v_5 SiH₃ umbrella mode with scaling factor of 0.97. It should be noted that for this deuterated molecule, this mode has the second highest calculated intensity of 100.93 km mol⁻¹.

Having identified the $H_3SiGeH_3(X^1A_1)$ and, tentatively, the $H_2GeSiH_3(X^2A')$ molecules, further absorptions of the irradiated silane–germane ice were analyzed. An absorption feature at

Fig. 2. Infrared spectra of the silane (SiH₄)-germane (GeH₄) frost at 12 K (a). After irradiation, deconvoluted peaks show new absorption features of H₃SiGeH₃ (¹A₁) at 2062 cm⁻¹ (b), H₃SiGeH (¹A') at 860 cm⁻¹ (c), and for the deuterated compounds, D₃SiGeD₃ (¹A₁) at 1462 cm⁻¹ (d), D₂GeSiD₃ at 642 cm⁻¹ (e), D₃SiGeD (¹A') at 1309 cm⁻¹ (f).

860 cm⁻¹ was found (Fig. 2(c)) suggesting the v_5 SiH₃ umbrella mode of silylgermylene, H₃SiGeH(X¹A'). It should be noted here that the MP2 calculated harmonic frequencies for the silylgermane

(H₃SiGeH₃) were compared to the literature experimental frequencies observed previously in the solid state by Lannon et al. al. [14] Scaling factors of 0.93 to 0.94 matched the calculated data with the

58

Table 4

Observed Ge_2H_x and Si_2H_x species (x = 1-6) and their absorptions in low temperature silane–germane matrices.

Carrier	Frequency (cm ⁻¹)	Fundamental	Carrier	Frequency (cm ⁻¹)	Fundamental	Ref.
Si ₂ H ₆	Overlay (820)	v ₆	Si ₂ D ₆	1531	V5	[25]
H_3SiSiH_2	844	v ₆	D_3SiSiD_2	621	<i>v</i> ₆	[25]
H₃SiSiH	869	v ₅	D ₃ SiSiD	635	v ₅	[26]
H ₂ SiSiH	636	v ₅	D ₂ SiSiD	Overlay (683)	<i>v</i> ₄	[26]
Ge ₂ H ₆	752	v ₆	Ge_2D_6	530	<i>v</i> ₆	[28]
	869	v ₁₁		626	v ₁₁	[28]
H ₂ GeGeH ₃	766	v ₆	D_2GeGeD_3	609	V4/V12	[28]
			D_2GeGeD_2	1481	v ₅	[27]
H₃GeGeH	780	v ₅	D ₃ GeGeD	557	v ₅	[28]
H ₂ GeGeH	1819	<i>v</i> ₃	D ₂ GeGeD	1319	<i>v</i> ₃	[28]

Table 5

Newly observed species and their absorptions in low temperature silane-germane matrices.

Carrier	Frequency (cm ⁻¹)	Fundamental	Carrier	Frequency (cm ⁻¹)	Fundamental
H₃GeSiH₃	2062	V2	D3GeSiD3	1462	ν ₂
H₂GeSiH₃	550 ^(a)	V7	D2GeSiD3	642	ν ₅
H₃SiGeH	860	V5	D3SiGeD	1309	ν ₃

(a) Not shown in Fig. 2.

Fig. 3. Temporal evolution of the experimental column densities and the best fits for $H_3SiGeH_3(^1A_1) \nu_2(a)$, $D_3SiGeD_3(^1A_1) \nu_2(b)$, $H_3SiGeH(^1A') \nu_5(c)$, and $D_3SiGeD(^1A') \nu_3(d)$, during irradiation of the silane–germane matrix at 12 K.

experimental observations. These MP2 frequencies were also compared to the vapor state experimental frequencies [14] scaling factors of 0.95 were calculated. An investigation of the deuterated silane–germane ice revealed an absorption feature at 1309 cm⁻¹ (Fig. 2(f)). According to the theoretical data, the second most intense frequency for the deuterated silylgermylene is 1316 cm⁻¹ v_3 GeD stretch. It was also observed that the two peaks, 860 and 1309 cm⁻¹ both disappear at 52 K upon warming the solid silane–germane ice suggesting a compound less stable than H₃SiGeH₃(X¹A₁). Note that no absorptions for SiGeH_x (*x* = 1–3) were observed experimentally. In summary, we have detected the silylgermane (SiGeH₆) and silylgermylene (H₃SiGeH) molecules along with their deuterated counterparts. We also observed an absorption feature for the H₂GeSiH₃, molecule of which we have made a tentative assignment.

6. Discussion and summary

The theoretical calculations and experiments revealed the formation of silvlgermane ($H_3SiGeH_3(X^1A_1)$) and silvlgermvlene $(H_3SiGeH(X^1A'))$ together with their deuterated counterparts. We now attempt to decipher a reasonable reaction mechanism for the two compounds. In a previous work by Carrier et al. of electron irradiated germane ices [27], the authors proposed that the digermane (Ge₂H₆) formation followed a (pseudo) first order reaction mechanism involving first the combination of two neighboring germyl radicals (GeH₃) with correct geometrical orientation within the pure solid germane ice yielding an energized Ge₂H₆ molecule, which was then stabilized by transfer of its internal energy to the surrounding ice. Alternatively, energized Ge₂H₆ molecules can fragment via atomic and/or molecular hydrogen loss pathways forming Ge₂H₅ and Ge₂H₄ isomers, respectively. In the present experiments, we utilized similar reaction scheme (Eq. (2)) to fit the derived temporal profiles.

The temporal evolution of the column densities and inherent fits of the silylgermane (SiGeH₆) utilizing the 2062 cm⁻¹ band (v_2 mode) is shown in Fig 3(a). The kinetic fit using (pseudo) first order kinetics (Eq. (3)) with the temporal evolution of the silylgermane, [A]_t, yields the best fit with $b = 13 \pm 1 \times 10^{15}$ molecules cm⁻² and $k = 0.028 \pm 0.004$ min⁻¹.

$$[A]_t = b[1 - exp(-kt)]$$
(3)

Considering the temporal profile and the previously suggested reaction mechanism to form Ge_2H_6 , we propose that the silylgermane $(H_3SiGeH_3(X^1A_1))$ molecule is formed via a (pseudo) first order reaction mechanism. This involves the silyl (SiH₃) and germyl (GeH₃) radicals formed via the loss of atomic hydrogen from silane and germane, respectively, within the ice upon irradiation with energetic electrons. If the neighboring radicals have the correct geometrical orientation, they can recombine to form energized silylgermane molecules $[H_3SiGeH_3]^*$, which can then transfer the excess internal energy to the matrix' this effectively stabilized the silylgermane molecule. The deuterated silylgermane (D₃SiGeD₃(X¹A₁)) follows the same temporal column density fit, and, therefore we suggest that its formation mechanism is the same as silylgermane and involves the recombination of neighboring D3-silyl and D3-germyl radicals. The kinetic fit using (pseudo) first order kinetics (Eq. (2))

of D6-silylgermane yields the best fit with $b = 12 \pm 6 \times 10^{15}$ molecules cm⁻² and $k = 0.012 \pm 0.008 \text{ min}^{-1}$. This slower rate constant in the case of the per-deuterated system might reflect a kinetic isotope effect, i.e., a slower rate of deuterium versus hydrogen elimination in the decomposition of D4-silane and D4-germane. This trend was reported by Kaiser et al. in MeV proton irradiated methane and D4-methane ices at 10 K, where methane was found to decompose more efficiently than D4-methane by a factor of 6 ± 2 [47].

Having proposed the reaction mechanism to form silylgermane $(H_3SiGeH_3(X^1A_1))$, we are turning our attention now to the formation of silvlgermylene (H₃SiGeH(X¹A')). In a previous work by Carrier et al. [27] the authors recommended that the H₃GeGeH isomer is formed through the unimolecular decomposition of energized digermane by molecular hydrogen elimination. Here, we propose a similar mechanism to form the silvlgermylene ($H_3SiGeH(X^1A')$) isomer via energized silvlgermane [H₃SiGeH₃]*. The temporal evolution of the 860 cm⁻¹ vibrational frequency v_5 mode and the inherent fit are shown in Fig 3(c), using Eq. (3). The rate constant for this reaction pathway was calculated to be $0.04 \pm 0.01 \text{ min}^{-1}$ and $b = 1.3 \pm 0.1 \times 10^{15}$ molecules cm⁻². These data indicate a (pseudo) first order reaction mechanism involving a unimolecular decomposition of internally excited silylgermane [H₃SiGeH₃]*. The temporal evolution of the 1309 cm⁻¹ vibrational frequency v_3 mode of the perdeuterated counterpart and the inherent fit are shown in Fig 3(d), using Eq. (3). The rate constant for this reaction pathway was calculated to be $0.03 \pm 0.01 \text{ min}^{-1}$ and $b = 1.3 \pm 0.2 \times 10^{15} \text{ molecules cm}^{-2}$. Note that the H₂GeSiH₃(X²A') radical assigned tentatively via its 550 cm⁻¹ absorption might be formed as a transient species at very low concentrations either by radiolysis of silylgermane (H₃SiGeH₃(X¹A₁)) or via decomposition of energized silvlgermane [H₃SiGeH₃]*. The concentrations are too low to extract quantitative kinetics.

Summarized, we observed the silylgermane (H₃SiGeH₃(X¹A₁)) and for the very first time the silylgermylene (H₃SiGeH(X¹A')) molecule together with their fully deuterated isotopomers in low temperature silane–germane and D4-silane–D4-germane matrices using infrared spectroscopy. Kinetic fits were presented suggesting that – within the liming of radical recombination reactions – the silylgermylene is formed via a unimolecular decomposition of energized silylgermane molecules.

Acknowledgments

This work was supported by the US National Science Foundation (CHE-0948258). Computer resources at the National Center for High-performance Computer of Taiwan were utilized in the calculations.

References

- [1] B.S. Meyerson, vol. 270 (iii), Scientific American, 1994, pp. 42.
- [2] A. Potie, T. Baron, F. Dhalluin, G. Rosaz, B. Salem, L. Latu-Romain, M. Kogelschatz, P. Gentile, F. Oehler, L. Montes, Nanoscale Res. Lett. 6 (2010) 187.
- [3] G. Chen, G. Springholz, W. Jantsch, F. Schaeffler, App. Phys. Lett. 99 (2011) 43103.
- [4] K. Ismail, B.S. Meyerson, P.J. Wang, Appl. Phys. Lett. 58 (1991) 2117.
- [5] T. Hackbarth, G. Hoeck, H.J. Herzog, M. Zeuner, J. Crys, Growth 201 (1999) 734.
 [6] R. People, J.C. Bean, C.G. Bethea, S.K. Sputz, LJ. Peticolas, Appl. Phys. Lett. 61 (1991) 1122.
- [7] P. Sun, S. Chang, Y. Chen, H. Lin, Solid-State Electron. 54 (2010) 1216.
- [8] Y.S. Tang, W.X. Ni, C.M. Torres, G.V. Hansson, Electron. Lett. 31 (1995) 1385.
- [9] K. Washiro, IEEE Trans. Electron. Devices 50 (2003) 656.
- [10] A. Stosic, V. Markovic, Z.J. Marinkovic, Autom. Control 16 (2006) 25.
- [11] J.D. Cressler, R. Krithivasan, A.K. Sutton, J.E. Seiler, J.F. Krieg, S.D. Clark, A.J.
- Joseph, IEEE Trans. Nucl. Sci. 50 (2003) 2086.
- [12] G. Patton, S. Iyer, S. Delage, S. Tiwari, J. Stork, Proc. Electrochem. Soc. 88 (1988) 114.
- [13] W.D. de Boer, D.J. Meyer, Appl. Phys. Lett. 58 (1991) 1286.
- [14] E.J. Spanier, A.G. MacDiarmid, Inorg. Chem. 2 (1963) 215.
- [15] F.W. Lampe, Spectrochim. Acta Part A 43A (1987) 257.
- [16] J.A. Lannon, G.S. Weiss, E.R. Nixon, Spectrochim. Acta 26A (1970) 221.

- [17] S. Mohan, A.R. Prabakaran, F. Payami, J. Raman, Spectrosc. 20 (1989) 119.
- [18] S. Mohan, M. Baskaran, Spectrochim. Acta 46A (1990) 757.
- [19] H. Obenhammer, T. Lobreyer, W. Sundermeyer, J. Mol. Struct. 323 (1994) 125.
- [20] P. Gaspar, J.J. Frost, J. Am Chem, Soc. 95 (1973) 6567.
- [21] F.E. Saalfeld, H.J. Svec, J. Phys. Chem. 70 (1966) 1753.
- [22] J.O. Jensen, Spectrochimic. Acta Part A 59 (2003) 3093.
- [23] J. Urban, P. Schreiner, G. Vacek, P. Von Rague Schleyer, J. Huang, J. Leszczynski, Chem. Phys. Lett. 264 (1997) 441.
- [24] R.S. Grev, H.F. Schaefer III, K.M. Bainess, J. Am. Chem. Soc. 112 (1990) 9458.
- [25] D. Sillars, C. Bennett, Y. Osamura, R. Kaiser, Chem. Phys. Lett. 305 (2004) 141.
- [26] D. Sillars, C. Bennett, Y. Osamura, R. Kaiser, Chem. Phys. Lett. 392 (2004) 541.
- [27] W. Carrier, W. Zheng, Y. Osamura, R. Kaiser, Chem. Phys. 330 (2006) 275.
- [28] W. Carrier, W. Zheng, Y. Osamura, R. Kaiser, Chem. Phys. 325 (2006) 499.
- [29] C. Bennett, A.M. Mebel, R.I. Kaiser, Phys. Chem. Chem. Phys. 6 (2004) 735.
- [30] A.M. Coats, D.C. McKean, D. Steele, J. Mol. Struct. 320 (1993) 269.
- [31] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
- [32] A.D. Becke, J. Chem. Phys 96 (1992) 2155.

- [33] A.D. Becke, J. Chem. Phys. 97 (1992) 9173.
- [34] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
- [35] G.D. Purvis, R.J. Bartlett, J. Chem. Phys. 76 (1982) 1910.
- [36] C. Hampel, K.A. Peterson, H.J. Werner, Chem. Phys. Lett. 190 (1992).
- [37] P.J. Knowles, C. Hampel, H.J. Werner, J. Chem. Phys. 99 (1994) 5219.
 [38] M.J.O. Deegan, P.J. Knowles, Chem. Phys. Lett. 277 (1994) 321.
- [39] M.J. Frisch et al., GAUSSIAN 03, Revision C.02, Gaussain, Inc., Wallingford CT, 2004.
- [40] R. Walsh, Acc. Chem. Res. 14 (1981) 246.
- K. Brady Clark, D. Griller, Organometallics 10 (1991) 746. [41]
- [42] H. Lischka, H.J. Kohler, J. Am. Chem. Soc. 10 (1983) 6646.
- [43] R.I. Kaiser, Y. Osamura, Astron. Astrophys. 432 (2005) 559.
- [44] G. Gopakumar, V.T. Ngan, P. Leviens, M.T. Nguyen, J. Phys. Chem. 112 (2008) 12187.
- [45] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502.
- [46] G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3039.
- [47] R.I. Kaiser, G. Eich, A. Gabrysch, K. Roessler, Astrophysics 484 (1997) 487.