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The Formation of HCS and HCSH Molecules and
Their Role in the Collision of Comet

Shoemaker-Levy 9 with Jupiter
R. I. Kaiser,* C. Ochsenfeld, M. Head-Gordon, Y. T. Lee†

The reaction of hydrogen sulfide with ground-state atomic carbon was examined with
crossed molecular beams experiments and ab initio calculations. The thiohydroxycar-
bene molecule, HCSH, was the reactive intermediate, which fragmented into atomic
hydrogen and the thioformyl radical HCS. This finding may account for the unassigned
HCS source and an unidentified HCSH radical needed to match observed CS abun-
dances from the collision of comet Shoemaker-Levy 9 into Jupiter. In the shocked jovian
atmosphere, HCS could further decompose to H and CS, and CS could react with SH
and OH to yield the observed CS2 and COS.

The discovery of comet D/Shoemaker-
Levy 9 (SL9) initiated the only observation
of the collision of two solar system bodies
(1). From 16 to 22 July 1994, about 20
fragments of the split nucleus impacted into
Jupiter causing enormous atmospheric dis-
turbances (2, 3). Earth-based observations
detected large amounts of the sulfur-con-
taining molecules S2, COS, CS2, CS, and
H2S, which are not indigenous to Jupiter’s
atmosphere (4–6). Generic reaction net-
works simulating the impact-induced sulfur
chemistry suffered from the lack of labora-
tory data on products and intermediates in

the H-C-S system and failed to quantita-
tively reproduce observed abundances of
sulfur-containing species in Jupiter’s atmo-
sphere. To match the observed data quali-
tatively, impact models had to include pos-
tulated reactions involving transient species
such as HCS and CH2S in the form of
thioformaldehyde (H2CS) (7, 8).

We present crossed molecular beams ex-
periments and ab initio calculations on the
reaction of ground-state carbon atoms,
C(3Pj), with hydrogen sulfide, H2S:

C(3Pj) 1 H2S(X1A1)3 H2SC (1)

3 HCS(X2A9) 1 H(2S1/2)

3 HSC(X2A9) 1 H(2S1/2) (2)

3 CS(X1S 1) 1 H2(X1Sg
1) (3)

3 CS(X1S 1) 1 2H(2S1/2) (4)

Atomic carbon is formed in initial SL9
collision–triggered shock waves character-
ized by high temperature of up to 5000 K
and might survive reentry of the impact
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plume (4, 5). Upon reaction of atomic car-
bon with hydrogen sulfide from either Jupi-
ter or the SL9 fragments (9), the formation
of organosulfur molecules is expected.

All ab initio calculations were per-
formed to predict relative energies to an
accuracy of 5 to 10 kJ mol21 (10). Singlet
thioformaldehyde, H2CS ({7} in Fig. 1), is
the global energy minimum on the CH2S
surface and is bound by 550.4 kJ mol21 with
respect to the reactants (Fig. 1 and Table
1). Its singlet-triplet gap of 167.5 kJ mol21

agrees with recent results of spectroscopic
investigations of 174 kJ mol21 (11). Singlet
trans- and cis-thiohydroxycarbene {4}/{5},
HCSH, lie 184.8 kJ mol21 and 189.8 kJ
mol21 above singlet thioformaldehyde. Trip-
let thiohydroxycarbene {3} is energetically
less favored by 76.1 kJ mol21 compared with
singlet trans-thiohydroxycarbene. Finally,
triplet and singlet 2,2-dihydrothiocarbonyl
{2}/{1}, H2SC, are only 63.5 and 57.3 kJ
mol21 more stable than the reactants. HSC
is less stable by 165.6 kJ mol21 compared
with HCS. The computed HCS enthalpy of
formation of 296.2 kJ mol21 agrees with
values from photoionization mass spectro-
metric studies [300.4 6 8.4 kJ mol21 (12,
13)]. Reaction exothermicities to form
HCS 1 H (reaction 1) and HSC 1 H
(reaction 2) are computed to be 183.9 kJ
mol21 and 18.3 kJ mol21, respectively.

We performed our experiments under
single-collision conditions at collision ener-
gies of 16.7 and 42.8 kJ mol21 using a
universal crossed molecular beams appara-
tus (14). The fourth harmonic of a neody-

mium-yttrium-aluminium-garnet laser was
focused on a rotating carbon rod, and ab-
lated carbon atoms were seeded into neon
and helium carrier gas (15). The pulsed
carbon beam crossed a H2S beam at 90°.
Time-of-flight (TOF) spectra and product
angular distributions of reactively scattered
products were recorded in the scattering
plane at a mass-to-charge ratio (m/e) of 45
for HCS and HSC and a m/e of 44 for CS by
using a quadrupole mass spectrometer with
an electron-impact ionizer. For physical in-
terpretation, results were transformed into
the center-of-mass (CM) reference frame.
We used a forward-convolution routine to
yield angular flux distribution T(u) and
translational energy flux distribution P(E)
in the CM frame (16).

The laboratory angular distributions and
TOF spectra of the reactive scattering sig-
nal at m/e 5 45 (HCS and HSC) are pre-
sented in Figs. 2 and 3. TOF spectra at
m/e 5 44 and 45 depict identical shapes,
indicating that HCS1 fragments partly to
CS1 in the electron-impact ionizer and
that channels 3 and 4 to CS are closed. No
radiative association to H2CS isomers was
observed. These results indicate that HCS
and HSC can be formed in the plume
chemistry of SL9 fragments during impact
into Jupiter. We also examined the chemi-
cal dynamics of the reaction to unveil in-
formation on intermediate H2CS complex-
es and product isomers using the transla-
tional energy P(E) and angular distributions
T(u). Both translational energy distribu-
tions peak at 70 and 50 kJ mol21 at our

higher and lower collision energies, respec-
tively. The experimental high-energy cut-
offs of 208 and 232 kJ mol21 agree with the
sum of our ab initio reaction energy for the
HCS isomer and the relative collision en-
ergies, that is, 201 and 226 kJ mol21. The
less stable HSC is expected to show cut-offs
at 35 and 61 kJ mol21 and can be excluded
as a major contribution to our signal (17).
The shapes of the angular distributions (Fig.
4) depend on the collision energy Ec. As Ec
increases from 16.7 to 42.8 kJ mol21, T(u)
changes from forward-backward symmetric
to more forward-scattered. This suggests
one reaction channel following indirect re-
active scattering dynamics through a com-
plex formation. At lower collision energy,
the fragmenting H2CS complex has a life-

Fig. 1. Energy level diagram of the C(3Pj) 1 H2S( X1A1) reaction and ab initio structures of H2CS and HCS
isomers. Red lines, singlet surface; blue lines, triplet surface. Gray balls denote carbon, blue balls
hydrogen, and yellow balls sulfur. Solid black lines define local minima, hereafter designated in curly
brackets, whereas dashed lines show potential reaction pathways.

Table 1. Structural data and rotational constants
(A, B, and C) of H2CS isomers as shown in Fig. 1
and HCS/HSC. Notation: (S–C) 5 162.2 denotes
bond length in picometers (S,C,H) 5 122.0° de-
notes bond angle with apical atom C, (S,H,H,C)
5 20.3° stands for the out-of-plane angle be-
tween the bond S–C and the plane H–H–C, and
(H–C–S–H) 5 97.2° stands for the torsion angle
H–C–S–H. Pt. group, point group.

Isomer
(Pt. group) Structural data A, B, C

(cm21)

1H2CS (S–C) 5 162.2 A 5 9.840
(C2v) (C–H) 5 108.8 B 5 0.583

(S,C,H) 5 122.0° C 5 0.550
3H2CS (S–C) 5 171.5 A 5 9.295

(Cs) (C–H) 5 108.2 B 5 0.532
(S,C,H) 5 118.3° C 5 0.505

(S,H,H,C) 5 20.3°

1HCSHtrans (H–C) 5 110.8 A 5 6.164
(Cs) (C–S) 5 168.3 B 5 0.613

(S–H) 5 135.4 C 5 0.558
(H,C,S) 5 100.8°
(C,S,H) 5 99.6°

1HCSHcis (H–C) 5 110.0 A 5 6.347
(Cs) (C–S) 5 166.2 B 5 0.615

(S–H) 5 137.7 C 5 0.560
(H,C,S) 5 109.5°
(C,S,H) 5 109.4°

3HCSH (H–C) 5 108.4 A 5 7.251
(C1) (C–S) 5 171.7 B 5 0.550

(S–H) 5 135.3 C 5 0.530
(H,C,S) 5 129.6°
(C,S,H) 5 98.5°

(H–C–S–H) 5 97.2°

1H2SC (C–S) 5 160.8 A 5 7.787
(C2v) (S–H) 5 139.6 B 5 0.643

(C,S,H) 5 132.1° C 5 0.594
3H2SC (C–S) 5 196.5 A 5 5.067

(Cs) (S–H) 5 135.4 B 5 0.460
(C,S,H) 5 104.6° C 5 0.454

(C,H,H,S) 5 68.7°

HCS (H–C) 5 108.7 A 5 30.783
(Cs) (C–S) 5 156.4 B 5 0.678

(H,C,S) 5 132.3° C 5 0.663
HSC (H–S) 5 136.7 A 5 9.858

(Cs) (S–C) 5 165.6 B 5 0.687
(H,S,C) 5 102.7° C 5 0.642
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time longer than its rotational period, but
with increasing collision energy (18), the
lifetime of the complex is reduced to less
than one rotational period.

We have tried to classify the fragment-
ing H2CS complex or complexes. The iden-
tification of HCS excludes decomposing
singlet or triplet H2SC {1}/{2}, because S–H
bond rupture would yield HSC. Further-
more, T(u) shows forward peaking at higher
collision energy. This requires that the in-
corporated C and the escaping H atom must
be located on opposite sites of the rotation-
al axes. On the basis of our ab initio geom-
etries of H2CS {6}/{7}, no rotation axis ful-
fills this requirement. Hence, thioformalde-
hyde can be excluded as the decomposing
complex. Therefore, thiohydroxycarbenes
{3}, {4}, and {5} are the only remaining
intermediates. Each can rotate around the
B/C axis to account for the forward-peaked
T(u), yielding HCS and H in the final bond
rupture about 0.1 ps after HCSH formation
(18, 19).

We identified the thioformyl radical,
HCS, as the major product of C 1 H2S
under single-collision laboratory condi-

tions. This reaction may account for the
unassigned HCS source required for chem-
ical reaction networks to match observed
CS abundances in the impact plumes from
the collision of SL9 fragments into Jupiter.
At 5000 K, where chemical models predict
atomic carbon to be present during the
initial impact (8, 9), the most probable
translation energy is about 50 kJ mol21,
close to our collision energy of 42.8 kJ

mol21. The high-energy tail of the Max-
well-Boltzman distribution could enable
HCS to be formed with more internal en-
ergy to undergo secondary decomposition to
CS and H in the jovian atmosphere. CS
might react with SH or OH to form ob-
served CS2 and COS (4, 5). Also, our
investigations classify a thiohydroxycarbene
complex, HCSH, as the reaction interme-
diate to form HCS and H. Although its
lifetime is too short to survive under our
single-collision conditions, the denser jo-
vian atmosphere could allow a three-body
collision. In this way internal energy can be
diverted, thus stabilizing HCSH. HCSH
should be included in impact models to
account for observed jovian CS abundanc-
es, whereas only the thioformaldehyde mol-
ecule has been incorporated so far (7).

Our results help to unravel the complex
impact-induced chemistry that occurred
during collision of SL9 with Jupiter. We
have suggested some formation mechanisms
of CS, CS2, and COS and have document-
ed the role of transient species HCS and
HCSH. However, compared with our ex-
periments, many complications exist in the
real jovian system. First, C atoms might
react concurrently with other molecules
such as acetylene, ethene, and hydrogen
cyanide (20); even formation of CH2
through a three-body reaction with H2 is
energetically feasible. Second, other path-
ways could contribute to H2CS and HCS:
HCS may be produced through reaction of
S atoms with CH3 radicals (7), initially
forming H and H2CS. The H2CS could be
photolyzed, yielding HCS and H, which
could then form CS and CS2 by photo-
chemical reactions (21). Third, molecules
formed during the initial, high-energy ex-
plosion might be altered as the impact
plume reenters the jovian atmosphere. The
fraction of molecules that survive the plume
reentry has not been established yet, but
these multiple shock events are important
for the final state of the gas. This reentry
shock is characterized by moderate temper-
atures [500 to 2500 K (22)], and the signif-
icance of atomic carbon under these condi-
tions has not yet been determined. The
complexity of this planetary system makes it
difficult to define the most important reac-
tion contributing to the SL9 impact-in-
duced sulfur chemistry and to model differ-
ent reactions at distinct stages of the impact
process simultaneously.
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Direct Observation of Heterogeneous Chemistry
in the Atmosphere
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Lara S. Hughes, Jonathan O. Allen, Bradley D. Morrical,

David P. Fergenson, Tas Dienes, Markus E. Gälli,
Robert J. Johnson, Glen R. Cass,* Kimberly A. Prather*

The heterogeneous replacement of chloride by nitrate in individual sea-salt particles was
monitored continuously over time in the troposphere with the use of aerosol time-of-flight
mass spectrometry. Modeling calculations show that the observed chloride displace-
ment process is consistent with a heterogeneous chemical reaction between sea-salt
particles and gas-phase nitric acid, leading to sodium nitrate production in the particle
phase accompanied by liberation of gaseous HCl from the particles. Such single-particle
measurements, combined with a single-particle model, make it possible to monitor and
explain heterogeneous gas/particle chemistry as it occurs in the atmosphere.

Airborne particles have an important in-
fluence on Earth’s radiation balance that
can lead to climate forcing (1). In addi-
tion, they are responsible for much of the
visibility reduction observed in urban ar-
eas and national parks (2) and can ad-
versely affect human health (3). These
particles are introduced directly into the
atmosphere from natural activities (for ex-
ample, sea spray and volcanic eruptions)
and anthropogenic pollution sources. As
they evolve in the atmosphere, their
chemical and physical properties—and
hence their characteristics, such as light
scattering and toxicity— change by accu-
mulation of atmospheric gas-phase chem-
ical reaction products or through hetero-
geneous reactions with gas-phase species.
For example, gaseous sulfur dioxide emit-
ted from fossil fuel combustion, as well as
organic species emitted from both anthro-
pogenic and biogenic sources, can react in
the atmosphere to form particulate sulfates
(4) or secondary organic aerosols (5), re-
spectively. Additionally, gas-phase emis-
sions of nitrogen oxides from combustion
sources undergo homogeneous atmospher-
ic reactions to produce gaseous species

including N2O5 and HNO3 (6, 7). These
gases can diffuse to the surface of sea-salt
particles where heterogeneous reactions
can lead to chloride displacement from
sodium chloride–containing particles, for
example, by

HNO3(g) 1 NaCl(s or aq)3

NaNO3(s or aq) 1 HCl(g) (1)

(subscripts g, s, and aq refer to gaseous,
solid, and aqueous phase species, respective-
ly), leaving sodium nitrate in the particle
phase (8).

In order to assess the effect of airborne
particles on atmospheric processes, the pri-
mary particle emissions, secondary particle
formation processes, and relevant heteroge-
neous chemistry must be understood theoret-
ically and confirmed experimentally. The
reactant-product relations involved in the
heterogeneous chemistry of aerosols are gen-
erally inferred from bulk samples of atmo-
spheric particles collected on filters or on
cascade impactor substrates. Unfortunately,
atmospheric particulate matter is a complex
mixture of particles of many different sizes
and chemical compositions, and therefore,
the exact chemical speciation of the individ-
ual particles cannot be determined by bulk
filter analysis. For example, if sulfate, nitrate,
sodium, and ammonium ions are all present
in a bulk sample, one cannot distinguish
whether all particles contain each chemical
species or whether pure ammonium sulfate
particles coexist with pure sodium nitrate
particles in the same air mass.
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