Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

SEVIER

Infrared spectroscopic detection of the methylgermyl (H₂GeCH₃) radical and its perdeuterated counterpart in low temperature matrices

Ralf I. Kaiser^{a,*}, William Carrier^a, Yoshihiro Osamura^b, Refaat M. Mahfouz^c

^a Department of Chemistry, University of Hawai'i at Manoa, Honolulu, USA

^b Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan

^c Department of Chemistry, King Saud University, Riyadh, Saudi Arabia

ARTICLE INFO

Article history: Received 12 March 2010 In final form 14 April 2010 Available online 24 April 2010

ABSTRACT

The C₃ symmetric methylgermyl radical, H₂GeCH₃(X²A'), and its D5-isotopomer were detected via infrared spectroscopy in electron-irradiated methane – germane matrices via the v_6 mode at 839 cm⁻¹ and the v_{12} absorption at 1406 cm⁻¹. Experiments with D4-germane – D4-methane matrices also detected absorptions from the D5-methylgermyl species upon electron exposure at 624 cm⁻¹ (v_7) and 1406 cm⁻¹ (v_3) originating from the CD₃ and GeD₂ groups of the D5-methylgermyl radical. Kinetic fits suggest that methylgermyl is formed via a unimolecular decomposition of methylgermane molecules (H₃GeCH₃), which in turn were synthesized via recombination of germyl (GeH₃) and methyl (CH₃) in the matrix.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

During the last decade, the chemistry of silicon- and germanium-bearing molecules has received considerable attention due to the applications to chemical vapor deposition processes (CVD) and solid state electronics like Schottky barrier diodes and laser diodes [1,2]. As members of main group IV, both silicon and germanium hold four valence electrons; they further form crystal lattices, in which substituted atoms (dopants) such as boron [3,4] and nitrogen can dramatically change the electrical properties such as applied in nitrogen-doped electric field resistors [5–7]. Typically, chemical vapor deposition techniques via the hot-wire approach utilize germane – methane mixtures or methylgermane (H₃GeCH₃) [8]. During these procedures, germanium-carbon bearing molecules like $GeXH_x$ (x = 1-6) were identified in the gas phase as important growth species to produce amorphous, often porous germanium-carbon films [9-11]. Here, controlling the growth-limiting steps in the synthesis of germanium-carbon bearing films needs sophisticated data on the time-dependent concentrations of carbon-germanium-bearing species in actual chemical vapor deposition processes. So far, the *in situ* characterization of gaseous species in CVD processes is conducted via time resolved threshold ionization mass spectrometry. However, despite the potential importance of radical species formed within the CVD process of methylgermane such as the methylgermyl species (H₂GeCH₃), no time resolved spectroscopic probes have been established. Here, infrared absorption might present a crucial identification tool to monitor the temporal evolution of these transient species in real time. Unfortunately, the infrared absorptions of the methylgermyl radical (H₂GeCH₃) have not been assigned to date due to experimental difficulties in synthesizing the methylgermyl radical.

How could the methylgermyl radical (H₂GeCH₃) be 'made' in the laboratory? Previously, we have utilized matrix isolation spectroscopy to synthesize unstable compounds from main group IV precursor molecules in low temperature (10 K) ices upon bombardment of these targets with high energy electrons, some of them which were reported in this journal. These comprised pure methane (CH₄), silane (SiH₄), and germane (GeH₄) ices as well as binary methane - silane mixtures. Upon interaction with energetic electrons, we were able to synthesize ethane (C_2H_6) , ethyl radicals (C_2H_5) , ethylene (C_2H_4) , vinyl radicals (C_2H_3) , and acetylene (C_2H_2) in methane ices [12], disilane (Si₂H₆), disilyl (Si₂H₅) [13], disilene (H₂SiSiH₂) and its silylsilylene (H₃SiSiH) isomer, and disilenyl (H_2SiSiH) [14] in silane matrices, digermane (Ge_2H_6) , digermyl (Ge_2H_5) [15], digermene (Ge_2H_4) , the digermenyl radical, (Ge_2H_3) [16], and, di- μ -hydrido-digermanium (Ge₂H₂) in germane ices, and methylsilane (CH₃SiH₃), methylsilyl (CH₃SiH₂) and the silylmethyl (SiH₃CH₂) isomer [17], methylsilylidyne (SiCH₃) and the silenyl (H₂CSiH) isomer [18], and methylenesilene (H₂CSi) in methane – silane ices. Those molecules and radicals indicated in italics were identified for the first time. Detailed kinetics studies suggest that upon electron irradiation, the group IV hydrides undergo unimolecular decomposition to form initially the methyl (CH₃), silyl (SiH₃), and germyl radicals (GeH₃). Neighboring radicals can recombine; for instance, in methane - silane matrices, a methyl radical recombines with a neighboring silyl radical to form internally excited CH₃SiH₃ molecules, which are either stabilized by the matrix

227

or decompose to CH₃SiH₂ via hydrogen atom emission. Here, we export this concept and synthesize the methylgermyl radical (H₂GeCH₃) in germane – methane ices upon electron irradiation via recombination of germyl with methyl radicals followed by unimolecular decomposition of the internally excited methylgermane molecule (H₃GeCH₃) to yield the methylgermyl radical (H₂GeCH₃).

2. Experimental

The experiments were conducted in a contamination-free ultrahigh vacuum (UHV) chamber, which was also utilized in the identification of the monobridged $(B_2H_5; C_{2y})$ diboranyl radical [19]. Briefly, this setup consists of a 15 l cylindrical stainless steel chamber which can be evacuated down to 3×10^{-11} torr by a magnetically suspended turbopump backed by an oil-free scroll pump. A rotatable, two stage closed cycle helium refrigerator is attached to the lid of the machine and holds a polished silver mono crystal. This crystal is cooled to about 10 K and serves as a substrate for the ice condensate. The methane (CH₄) - germane (GeH₄) and D4-methane (CD_4) – D4-germane (GeD_4) gases were premixed at a ratio 21 mbar to 16 mbar. The ice condensation is assisted by a precision leak valve, which is connected to a gas reservoir. The leak valve rests on a linear transfer mechanism; during the actual gas condensation, the deposition system is moved 5 mm in front of the silver target. This setup guarantees a reproducible thickness of the frosts at 10 K. The germane - methane ices of thicknesses of 180 ± 30 nm and composition of 1.8 ± 0.1 :1 were prepared at 11 K by depositing germane (99.99%) and methane (99.99%) as well as D4-germane (99.99%) and D4-methane (99.99%) at pressures of 1×10^{-8} torr for 22 min onto the cooled silver crystal. The infrared absorptions of the frosts can be attributed to the same fundamentals, combinations, and overtone modes as observed in neat methane [12] and germane ices [15,16] together with their deuterated analog samples investigated earlier in our group (Table

Table 1

Infrared absorptions originating from methane and germane in the germane – methane frosts prior to the irradiation at 10 K; β , and γ denote lattice modes of the germane sample.

Frequency, cm ⁻¹	Assignment methane	Characterization
5981	2v ₃	Overtone
5798	$v_1 + v_3$	Combination
5563	$v_3 + 2v_4$	Combination
4521	$v_2 + v_3$	Combination
4294	$v_3 + v_4$	Combination
4195	$v_1 + v_4$	Combination
4131	$v_2 + 2v_4$	Combination
3841	3v ₄	Overtone
3009	<i>v</i> ₃	Fundamental
2903	<i>v</i> ₁	Fundamental
2810	$v_2 + v_4$	Combination
2586	$2v_4$	Overtone
1526	v ₂	Fundamental
1300	<i>v</i> ₄	Fundamental
	Assignment germane	
4190*	2v ₃	Overtone
3000**	$v_2 + v_3$	Combination
2220	$v_3 + \gamma$	Combination
2113	$v_3 + \beta$	Combination
2093	$v_3 + \alpha$	Combination
1736	$v_2 + v_4 + \alpha$	Combination
1725	$v_2 + v_4$	Combination
943	$v_4 + \gamma$	Combination
919	<i>v</i> ₂	Fundamental
823	$v_4 + \alpha$	Combination
796	<i>v</i> ₄	Fundamental

* Overlap with $v_1 + v_4$ from methane.

* Overlap with v_3 from methane.

1; Fig. 1); the presence of the α , β , and γ lattice modes of germane indicates the germane-rich nature of the ices as extracted from the infrared spectra. These samples were irradiated at 10 K with 5 keV electrons generated in an electron gun at beam currents of up to 1000 nA by scanning the electron beam over an area of 3.0 ± 0.4 cm². Accounting for irradiation time of 60 min and the extraction efficiency of 78.8% of the electrons, this exposes the targets to 2.2×10^{16} electrons. To guarantee an identification of the reaction products in the ices on line and *in situ*, a Fourier Transform infrared

Fig. 1. Infrared spectrum of the germane – methane mixture prior to the electron irradiation at 10 K. Absorptions belonging to methane are in bold, those to germane in italics. Top: 4000–500 cm⁻¹; center: 5000–4000 cm⁻¹; bottom: 6000–5500 cm⁻¹.

spectrometer (FTIR) is utilized; spectra were averaged for 180 s at a resolution of 4 cm⁻¹.

3. Theoretical approach

We examined the molecular structures (Fig. 2) and vibrational frequencies (Table 2) of multiple isomers of the GeCH_x (x = 1-6) species in terms of ab initio molecular orbital methods. The geometries were optimized with the hybrid density functional B3LYP method, i.e. Becke's three-parameter non-local exchange functional [20] with the non-local correlation functional of Lee, Yang, and Parr [21] and the 6-311G(d,p) basis set [22]. The coupled cluster CCSD(T) calculations [23,24] with the aug-cc-pVTZ basis set [25] were also performed at the optimized structures obtained with the B3LYP method in order to compare the relative energies of the isomers. All computations were carried out using the GAUSSIAN program package [26]. The relative energies stated in the text are the values obtained with the CCSD(T) method corrected with the zero-point vibrational energies obtained with the B3LYP method (Tables 3a and 3b).

4. Computational results

To identify the newly formed species carrying a germaniumcarbon bond and its perdeuterated counterparts, it is important to calculate the infrared active absorptions frequencies of the GeCH_x and GeCD_x (x = 1-6) molecules; it is also important to compute the integrated absorption coefficients of the normal modes. These frequencies can be utilized then – after scaling – to be compared with the novel absorptions appearing in the irradiated samples. Fig. 2 depicts the structures of various GeCH_x species and their structural isomers obtained with the B3LYP/6-311G(d,p) method; the energetics are compiled in Tables 3a and 3b. Considering the triatomic GeCH species, the most stable isomer is the linear GeCH radical in the doublet Π state but not in the Σ state which has triple bond between Ge and C atoms. The ${}^{2}\Sigma$ GeCH species is calculated to be 156 kJ mol⁻¹ less stable than the ground ${}^{2}\Pi$ GeCH molecule. The structure of HGeC isomer is calculated to have bent structure as shown in Fig. 2 and its energy is 218 kJ mole higher than the most stable GeCH species. Three GeCH₂ isomers were identified, in which both hydrogen atoms were connected to the carbon (GeCH₂) or germanium atom (H_2 GeC); in the third isomer. one hydrogen atom is linked to carbon and the second one to germanium (HGeCH). The first two isomers belong to the C_{2v} point group, whereas the HGeCH holds C_s symmetry. Since the carbonhydrogen bond is more stable than the germanium-hydrogen bond, the thermodynamical stability of these isomers increases from H₂GeC via HGeCH to GeCH₂. All GeCH₂ isomers are in the closed-shell singlet states, and the triplet state of GeCH₂ is calculated to be 143 kJ mol⁻¹ higher in energy than the corresponding singlet state. In the case of HGeCH isomer, the linear structure has two imaginary frequencies and the only trans form of HGeCH

Fig. 2. Optimized structures of GeCH_n (n = 1-6) species calculated with the B3LYP/6-311G(d,p) method. Bond lengths and bond angles are in Å and degrees, respectively.

Table 2

Unscaled vibrational frequencies and infrared intensities of $GeCH_n$ and $GeCD_n$ (n = 1-6) isomers calculated with the B3LYP/6-311G(d,p) method.

Mode		Frequency, cm ⁻¹	Intensity, cm molec ⁻¹	Frequency, cm ⁻¹	Intensity, cm molec ⁻¹	Characterization
		GeCH (² П)		GeCD (² Π)		
<i>v</i> ₁	σ	3237	1.09E-19	2398	5.38E-19	CH stretch
<i>v</i> ₂	σ	865	5.59E-18	831	5.10E-18	GeC stretch
<i>v</i> ₃	π_x	512	2.51E-17	394	1.49E-17	Bend
<i>v</i> ₄	π_y	468	4.11E-18	360	2.45E-18	Bend
		GeCH $(^{2}\Sigma)$		GeCD $(^{2}\Sigma)$		
ν.	σ	3284	178F-17	2444	967F-18	CH stretch
V1 Vo	σ	1040	6.92F_21	995	4.08F_20	CeC stretch
V2	π	714	7 97E 17	555	5 10F 17	Bend
V3	n	714	7.571-17	551	J.10L-17	benu
		HGeC (² A')		DGeC (² A')		
<i>v</i> ₁	a'	2046	9.16E-18	1458	4.74E-18	GeH stretch
<i>v</i> ₂	a'	788	2.46E-20	786	4.67E-20	GeC stretch
V3	a'	205	6.57E-18	150	3.70E-18	Bend
		GeCH ₂ (¹ A ₁)		$GeCD_2$ (¹ A ₁)		
V1	<i>a</i> 1	3083	607E-20	2238	4 72E-20	CH ₂ sym_stretch
V1 V2	a1	1344	2 28F-18	1041	346F - 18	CH ₂ scissor
V2 V2	a,	786	359F - 18	707	1.95F - 18	GeC stretch
V.	h,	688	2.26F - 17	540	1.002 - 10 1.41F-17	Out of plane
V _E	b ₁ b ₂	3166	5.17F-19	2348	2 89F-19	CH_2 asym stretch
Ve	b ₂ b ₂	403	4 27F_20	305	1 92F_20	CH ₂ rocking
10	<i>D</i> 2	405	4.27 L-20	505	1.522-20	CH2 locking
		HGeCH (¹ A')		DGeCD (¹ A')		
<i>v</i> ₁	a'	3250	3.69E-19	2406	2.53E-19	CH stretch
<i>v</i> ₂	a'	2097	6.06E-18	1495	3.02E-18	GeH stretch.
<i>v</i> ₃	a'	943	6.99E-19	895	7.42E–20	GeC stretch
<i>v</i> ₄	a'	775	1.44E-17	607	9.10E-18	CH bend
v ₅	a'	313	1.13E-17	226	5.99E-18	GeH bend
v ₆	a'	534	1.97E-17	398	1.15E-17	Torsion
		H_2 GeC (¹ A ₁)		D_2 GeC (¹ A ₁)		
V1	<i>a</i> ₁	2105	3.46E-18	1495	1.67E-18	GeH ₂ sym. stretch
V2	a ₁	795	5.62E-19	782	1.18E-18	GeC stretch. GeH_2 scissor
V2 V2	a ₁	768	5.86E-18	557	2.77E-18	GeC stretch, GeH_2 scissor
V4	b1	311	2.24E-19	230	2.83E-20	Out of plane
V5	b_2	2138	9.09E-18	1526	4.97E-18	GeH_2 asym. stretch
Ve	b_2	219	6.80E-18	168	4.90E-18	GeH ₂ rocking
. 0	-2					
	_1	GeCH ₃ ("A")	2.445 10	GeCD ₃ (~A [*])	1 505 10	CI a server attacted
<i>v</i> ₁	a'	3060	3.44E-18	2255	1.59E-18	CH ₃ asym. stretch
<i>v</i> ₂	ď	2985	1.20E-18	2143	2.66E-19	CH ₃ sym. stretch
<i>v</i> ₃	ď	1448	3.03E-18	1052	1.32E-18	CH ₃ deformation
<i>v</i> ₄	ď	1232	1.23E-18	951	2.49E-18	CH ₃ umbrella
<i>v</i> ₅	d' T'	587	3.3/E-18	410	4.84E-19	CH ₃ rocking
V ₆	u ~'	302	4.03E-10	495	0.01E-10	Get stretch
V7	u a'	1259	1.2/E-10 1.40E 19	2284	5.51E-19	CH_3 deformation
V8	u a'	1556	1.40E-10	975	7.99E-19	CH ₃ deformation
Vg	u	540	1.23E-10	409	0.14E-19	CH ₃ locking
		HGeCH ₂ (² A)		DGeCD ₂ (² A)		
<i>v</i> ₁	а	3180	9.51E-19	2362	4.67E-19	CH ₂ asym. stretch
<i>v</i> ₂	а	3084	1.78E-18	2234	8.78E-19	CH ₂ sym. stretch
<i>v</i> ₃	а	1898	4.20E-17	1352	2.14E-17	GeH stretch
<i>v</i> ₄	а	1391	3.73E-19	1046	1.50E-19	CH ₂ scissor
v ₅	а	815	1.07E-17	636	5.60E-18	GeH bend, CH_2 rocking
v ₆	а	684	9.99E-18	588	5.13E-18	GeC stretch
v ₇	а	571	8.74E-19	433	1.61E-18	CH ₂ rocking
V8	а	555	3.12E-20	398	1.35E-19	Torsion
v9	а	436	2.54E-18	336	1.54E-18	GeH bend
		H ₂ GeCH (² A)		D ₂ GeCD (² A)		
V1	а	3269	643E-19	2417	5 87E-19	CH stretch
V2	a	2185	9.51E-18	1556	5 78E-18	GeH stretch
V2 V2	a	2131	1.00F - 17	1516	4 65F-18	GeH stretch
V ₄	a	899	1.00E 17	844	5 50F-19	GeC stretch
V-	a	841	6.65E_18	615	3.86F_18	GeH ₂ scissor
Vc	a	617	6.59F - 18	449	3.89F_18	GeH ₂ out of plane
Va	a	560	8.81F_18	434	6.37F_18	GeH ₂ rocking
Vo	a	384	2.82F_18	280	1 22F_18	CH bend
Vo	a	206	4.63F - 18	157	3 00F-18	Torsion
'9	u	200	1.051-10		5.001-10	TOTSTOT
		H_3 GeC (² A ^{$\prime\prime$})		$D_3GeC(^2A'')$		
<i>v</i> ₁	a'	2111	1.37E-17	1502	8.00E-18	GeH ₃ asym. stretch
<i>v</i> ₂	<i>a</i> ′	2084	6.31E-18	1480	2.62E-18	GeH ₃ sym. stretch

(continued on next page)

Table 2 (continued)

Mode		Frequency	Intensity	Frequency	Intensity	Characterization
moue		cm ⁻¹	cm molec ⁻¹	cm ⁻¹	$cm molec^{-1}$	characterization
V3	a'	876	7.51E-18	624	4.05E-18	GeH ₃ deformation
V4	a'	777	1.74E-17	556	9.77E-18	GeH3 umbrella
v ₅	a'	572	1.32E-18	570	1.10E-19	GeC stretch
v ₆	a'	288	5.99E-18	217	3.82E-18	GeH ₃ rocking
v ₇	a'	2112	2.06E-17	1507	1.10E-17	GeH ₃ asym. stretch
V.8	a'	842	4.48E-18	599	2.34E-18	GeH ₃ deformation
Vo	a'	395	3.60E-18	295	2.34E-18	GeH ₂ rocking
. 5		1		1		
		$HGeCH_3$ ('A')		$DGeCD_3$ ('A')		
<i>v</i> ₁	a'	3117	2.76E-18	2309	1.18E–18	CH ₃ asym. stretch
<i>v</i> ₂	a'	3006	1.05E-18	2156	2.38E-19	CH ₃ sym. stretch
<i>v</i> ₃	a'	1859	6.31E-17	1324	3.22E-17	GeH stretch
<i>v</i> ₄	a'	1443	8.67E-19	1044	5.48E-19	CH ₃ deformation
v ₅	a'	1239	1.35E-18	956	2.60E-18	CH3 umbrella
VG	a'	890	8.75E-18	675	4.22E-18	GeH bend, CH ₃ deformation
V7	a'	612	1.96E-18	436	6.18E-19	GeH bend
Vo	a'	527	7.28E-18	484	6.45E-18	GeC stretch
Vo	<i>a</i> ′′	3066	3 14E-18	2265	1.68E - 18	CH ₂ asym_stretch
Vio	a''	1454	1.65E - 18	1055	8 13F-19	CH_2 deformation
V IO	a''	580	2.65E - 19	430	1 79F_19	CH ₂ deformation
v11	u a'/	128	5 12F 20	450	2.04E 20	Torsion
V ₁₂	u	128	5.13E-20	91	2.04E-20	TOISIOII
		H_2GeCH_2 (¹ A ₁)		D_2GeCD_2 (¹ A ₁)		
<i>v</i> ₁	a_1	3151	1.27E-19	2284	8.72E-21	CH ₂ sym. stretch
<i>v</i> ₂	<i>a</i> ₁	2155	4.71E-18	1530	2.57E-18	GeH ₂ sym. stretch
V3	a1	1394	4.30E-19	1080	5.99E-19	CH ₂ scissor
V4	<i>a</i> ₁	869	2.28E-18	611	3.06E-18	GeH ₂ scissor
Vs	<i>a</i> 1	833	4.16E-18	760	2.62E-19	GeC stretch
Ve	a1 a2	718	0.005+00	508	0.00E+00	Torsion
V6	u2 b.	748	0.065 19	567	6 16F 19	CH- out of plano
V7	<i>D</i> 1	740	3.00E 18	252	1 COE 10	
V8	D1	2255	5.00E-18	232	1.00E-10 6.02E-20	Gen ₂ out of plane
Vg	D2	3233	2.21E-20	2424	0.03E-20	
v ₁₀	D ₂	2171	1.65E-17	1549	8.83E-18	GeH ₂ asym. stretch
v ₁₁	<i>b</i> ₂	822	9.12E-18	639	5.99E-18	CH ₂ rocking
v ₁₂	b_2	457	2.29E-18	327	1.11E-18	GeH ₂ rocking
		H ₂ GeCH (¹ A)		D ₂ GeCD (¹ A)		
v .	a	2946	8 74F_18	2163	4.06F - 18	CH stretch
v I No	a	2140	1 44E 17	1530	9.00E-10	CeH stretch
V2	u	2145	1.44E-17	1401	0.22E-10 1 29E 17	Coll stretch
V3	u	2054	2.44L-17 6.07E 19	1451	1.20L-17 2.22E 10	Gell stretch
V4	u	2003	0.97E-10	1400	5.22E-10	Gell defermetion
<i>v</i> ₅	a	896	1.35E-17	637	5.8/E-18	GeH ₃ deformation
<i>v</i> ₆	а	884	7.17E-19	667	1.4/E-18	CH bend
v ₇	а	834	5.88E-18	597	2.03E-18	GeH ₃ deformation
v ₈	а	789	1.31E-17	567	7.07E–18	GeH ₃ umbrella
v ₉	а	600	1.31E-18	579	1.29E–18	GeC stretch
v ₁₀	а	535	9.34E-18	391	5.74E-18	GeH_3 rocking
v ₁₁	а	359	1.07E-17	273	6.61E-18	torsion
v ₁₂	а	256	1.37E-18	185	7.12E-19	GeH ₃ rocking
		$H_{-}CeCH_{-}(^{2}A')$		$D_{-}C_{\alpha}CD_{-}(^{2}A')$		
ν.	a'	3113	1 22F 18	2304	4 20F 10	CH- asym stretch
v1	u a'	2024	1.222 10	2304	4.20L-15	CH ₂ sym_stretch
V2	a'	2062	1.500-10	1465	9.37L-13	CeHe sum stretch
V3	u a'	1467	7.655 10	1062	5.03E-10	CH. deformation
v4	u a/	1265	2 105 20	077	3.02E-19 3.02E 10	
V5	u «	1200	J.10E-2U	511	2.02E-19	
V6	ď	000	1.20E-17	604	0.20E-10	Gen ₂ scissof
V7	a'	820	9.31E-18	532	5.43E-18	CH ₃ rocking
v ₈	<i>a'</i>	569	1.20E-18	518	1.66E-18	GeC stretch
V9	a'	542	4.01E-18	391	1.54E-18	GeH ₂ umbrella
v ₁₀	<i>a</i> ′′	3134	1.28E-18	2322	3.56E-19	CH ₃ asym. stretch
v ₁₁	<i>a</i> ′′	2094	3.12E-17	1494	1.62E-17	GeH ₂ asym. stretch
v ₁₂	<i>a</i> ′′	1459	8.48E-19	1055	7.72E-19	CH ₃ deformation
v ₁₃	<i>a</i> ′′	868	5.99E-18	662	3.21E-18	CH ₃ rocking
v ₁₄	<i>a</i> ′′	505	1.31E-18	359	6.25E-19	GeH ₂ rocking
v ₁₅	<i>a</i> ′′	155	4.04E-20	110	1.82E-20	Torsion
		H_3GeCH_2 (² A')		D_3GeCD_2 (² A')		
V1	<i>a</i> ′	3126	1.33E-18	2262	4.53E-19	CH_2 sym. stretch
V2	<i>a</i> ′	2133	1.27E-17	1514	7.95E-18	GeH ₂ sym_stretch
V2	<i>a</i> ′	2099	2.03F - 17	1494	9.67F-18	CeH stretch
V3	a'	1301	1.17E 10	1044	1 155 20	CH- scissor
V4	u a'	1331	5.015 19	620	1.1JE-20 2.77E 10	Coll deformation
V5	a'	000	J.91E-18	050	2.//E-18	Gell unbrelle
<i>v</i> ₆	ď	853	2.23E-17	615	6.92E-18	GeH ₃ umbrella
V7	<i>a</i> ′	634	4.57E-18	586	8.23E-18	GeC stretch
v ₈	a'	591	1.43E-17	467	9.43E-18	GeH ₃ rocking, CH ₂ umbrella

Table 2 (continued)

Mode		Frequency, cm ⁻¹	Intensity, cm molec ⁻¹	Frequency, cm ⁻¹	Intensity, cm molec ⁻¹	Characterization
v9	<i>a</i> ′	478	1.49E-18	347	3.34E-19	CH ₂ umbrella
V10	$a^{\prime\prime}$	3231	5.41E-19	2405	1.11E-19	CH ₂ asym. stretch
v ₁₁	<i>a</i> ′′	2137	2.32E-17	1524	1.24E-17	GeH ₂ asym. stretch
v ₁₂	<i>a</i> ′′	901	2.87E-18	646	1.02E-19	GeH ₃ deformation
v ₁₃	<i>a</i> ′′	804	1.01E-17	616	7.12E-18	CH ₂ rocking
v ₁₄	<i>a</i> ′′	501	2.10E-18	357	9.84E-19	GeH ₃ , CH ₂ rocking
v_{15}	<i>a</i> ′′	30	2.09E-21	21	1.08E-21	Torsion
		$H_{3}GeCH_{3}$ (¹ A ₁)		$D_{3}GeCD_{3}$ (¹ A ₁)		
<i>v</i> ₁	<i>a</i> ₁	3043	1.70E-18	2182	6.05E-19	CH ₃ sym. stretch
<i>v</i> ₂	<i>a</i> ₁	2129	1.17E-17	1509	6.28E-18	GeH ₃ sym. stretch
<i>v</i> ₃	<i>a</i> ₁	1286	3.18E-19	997	6.22E-19	CH₃ umbrella
v_4	<i>a</i> ₁	850	2.65E-17	610	1.40E-17	GeH3 umbrella
v ₅	<i>a</i> ₁	586	2.95E-18	535	2.01E-18	GeC stretch
v ₆	<i>a</i> ₂	167	0.00E+00	118	0.00E+00	Torsion
V7	е	3124	3.38E-18	2314	9.80E-19	CH₃ asym. stretch
v ₈	е	2131	5.05E-17	1519	2.68E-17	GeH ₃ asym. stretch
v ₉	е	1473	1.12E-18	1064	1.20E-18	CH ₃ deformation
v ₁₀	е	908	1.81E-18	633	1.20E-17	GeH ₃ deformation
v ₁₁	е	857	2.63E-17	670	3.40E-18	CH ₃ rocking
v ₁₂	е	499	4.98E-18	356	2.32E-18	GeH ₃ rocking

Table 3a

Relative energies (kJ mol⁻¹) of the isomers of each GeCH_n (n = 1-5) species calculated with the CCSD(T)/aug-cc-pVTZ and B3LYP/6-311G(d,p) methods.

Species	CCSD(T)	B3LYP
GeCH (² Π)	0	0
GeCH (² Σ)	156	194
HGeC (² A')	218	247
$GeCH_2 (^1A_1)$	0	0
HGeCH (¹ A')	162	197
H ₂ GeC (¹ A ₁)	370	400
GeCH ₃ (² A'')	0	0
HGeCH ₂ (² A)	93	97
H ₂ GeCH (² A)	191	226
H ₃ GeC (² A'')	390	424
$\begin{array}{l} HGeCH_3\ ({}^1A')\\ H_2GeCH_2\ ({}^1A_1)\\ H_3GeCH\ ({}^1A) \end{array}$	0 29 309	0 59 342
H ₂ GeCH ₃ (² A')	0	0
H ₃ GeCH ₂ (² A')	60	69

was obtained by geometry optimization. The same trend is observable within the GeCH₃ isomers. Here, four local minima were computed; the thermodynamical stability rises as the numbers of carbon-hydrogen bonds increase from H_3GeC via H_2GeH and HGeH₂ to GeCH₃. The next series comprises the GeCH₄ isomers with its members HGeCH₃, H₂GeCH₂, and H₃GeCH. Finally, the H₂GeCH₃, H₃GeCH₂, and H₃GeCH₃ molecules were identified as local minima. In the case of GeCH₃ species, the lengths of Ge-C bonds are calculated to be quite large; 2.0 Å for GeCH3 and H3GeC, and these bond distances are slightly larger than the single bond length 1.97 Å of Ge-C bond in H₃GeCH₃ molecule. While the Ge-C bond in H_2 GeCH isomer (1.79 Å) seems to have double bond character, the Ge–C bond in HGeCH₂ isomer (1.90 Å) is weaker than that of H₂GeCH isomer. Since the optimized structure of HGeCH₂ does not have molecular symmetry and the CH₂ group is not in plane, HGeCH₂ molecule has less Π-bonding character than H₂GeCH isomer although HGeCH₂ is energetically more stable than H₂GeCH. Note that ethylene-type H₂GeCH₂ species and germylene HGeCH₃ isomers are energetically close in the case of GeCH₄ species. The triplet state of HGeCH₃ species is calculated to be 107 kJ mol⁻¹ higher in energy than the singlet ground state of HGeCH₃ molecule.

Table 3b

Bond dissociation energies (kJ mol⁻¹) of the GeCH_{*n*} (*n* = 1–5) species calculated with the CCSD(T)/aug-cc-pVTZ and B3LYP/6-311G(d,p) methods.

Species	Products	CCSD(T) ^a	B3LYP ^a
GeCH (² П) HGeC (² A')	Ge(³ P) + CH (² Π) GeC (³ Π) + H (² S) H (² S) + GeC (³ Π)	464 _ ^b _ ^b	457 436 190
	HGe $(^{2}\Pi)$ + C (^{3}P)	297	267
$GeCH_2$ (¹ A ₁)	GeCH $(^{2}\Pi)$ + H (^{2}S)	406	400
HGeCH(¹ A')	$Ge({}^{2}P) + CH_{2}({}^{2}B_{1})$ H (${}^{2}S$) + GeCH (${}^{2}\Pi$)	459 244 421	437 202 281
$H_2 \text{GeC} \left({}^1\text{A}_1 \right)$	HGe $(^{-11})$ + CH $(^{-11})$ H (^{2}S) + HGeC $(^{2}A')$ H ₂ Ge $(^{3}B_{1})$ + C (^{3}P)	254 351	246 337
GeCH ₃ (² A")	GeCH ₂ (${}^{1}A_{1}$) + H (${}^{2}S$)	250 260	262
HGeCH ₂ (² A)	$H(^{2}S) + GeCH_{2}(^{1}A_{1})$	157	166
2()	HGe $(^{2}\Pi)$ + CH ₂ $(^{3}B_{1})$	339	325
	HGeCH (¹ A') + H (² S)	414	413
H ₂ GeCH (² A)	$H(^{2}S) + HGeCH(^{1}A')$	317	283
	$H_2Ge(^1A_1) + CH(^2\Pi)$	357	327
2	$H_2GeC(^{3}A'') + H(^{2}S)$	456	443
H_3 GeC (² A")	H $({}^{2}S)$ + H ₂ GeC $({}^{1}A_{1})$ GeH ₃ $({}^{2}A_{1})$ + C $({}^{3}P)$	257 229	245 227
$HGeCH_3$ (¹ A')	$H(^{2}S) + GeCH_{3}(^{2}A'')$	294	285
	GeH $(^{2}\Pi)$ + CH ₃ $(^{2}A_{2}'')$	277	248
	$HGeCH_2 (^{2}A) + H (^{2}S)$	388	381
H_2GeCH_2 (¹ A ₁)	$H(^{2}S) + HGeCH_{2}(^{2}A)$	358	322
	$GeH_2(^1A_1) + CH_2(^1A_1)$	440	411
	$H_2GeCH(^2A) + H(^2S)$	456	452
H_3 GeCH (³ A")	H (2 S) + H ₂ GeCH (2 A)	244	240
	$GeH_3(^2A_1) + CH(^2\Pi)$	345	329
	H_3 GeC (² A'') + H (² S)	444	437
H_2GeCH_3 (² A')	$HGeCH_3 (^{1}A') + H (^{2}S)$	249	231
	$H_2GeCH_2 ({}^{1}A_1) + H ({}^{2}S)$	278	290
	$GeH_2(^1A_1) + CH_3(^2A_2'')$	230	191
H_3GeCH_2 (² A')	$H(^{2}S) + H_{2}GeCH_{2}(^{1}A_{1})$	218	221
	$GeH_3(^2A_1) + CH_2(^3B_1)$	363	344
	$H_3GeCH(^{\circ}A'') + H(^{\circ}S)$	429	434
H_3GeCH_3 (¹ A ₁)	$H_2GeCH_3(^2A') + H(^2S)$	358	345
	$H_3GeCH_2 (^2A') + H (^2S)$	418	414

 $^{\rm a}$ Zero-point vibrational energies are corrected by the values calculated with B3LYP/6-311G(d,p) method.

^b Since there is convergence problem for the CCSD(T) calculation of triplet state of GeC molecule, the dissociation energy leading to GeC species cannot be evaluated with the CCSD(T) method.

The bond distances of Ge–C are clearly demonstrated to be single bond for HGeCH₃ and double bond for H₂GeCH₂. The less stable H₃GeCH isomer is methylene-type structure and the geometry of the singlet state shown in Fig. 2 does not have any molecular symmetry. The relative energy of this singlet state was calculated to be 309 kJ mol⁻¹ higher than the most stable HGeCH₃ species. The ground state of H₃GeCH species is not the singlet state and the triplet state is calculated to be 68 kJ mole⁻¹ more stable than the singlet state. In the case of GeCH₅ species, the energy difference between the most stable methylgermyl radical H₂GeCH₃ and less stable germylmethyl radical H₃GeCH₂ is only 60 kJ mol⁻¹. The bond distances of Ge–C are shown to be single bonds both in H₂GeCH₃ and H₃GeCH₂ species. We have found that the internal rotations of CH₃ and GeH₃ groups are almost free in H₃GeCH₂, H₂GeCH₃, and H₃GeCH₃ molecules.

5. Experimental results

Upon the electron irradiation of the methane - germane ices, prominent absorptions arose from those species observed previously in pure methane [12] and germane ices [15,16] such as acetylene (C₂H₂: 736 cm⁻¹, v₅), ethylene (C₂H₄: 1435 cm⁻¹, v₁₂), and ethane (C_2H_6 : 2976 cm⁻¹, v_1/v_{10} ; 2937 cm⁻¹, $v_1 + v_{10}$, 1371 cm⁻¹, (Fig. 3). The germane-rich nature of the ices was the likely cause that the ethyl (C_2H_5) and vinyl radicals (C_2H_3) were not detected. The pristine ices depict also regions, which are free of absorptions from the reactants and from the synthesized C_2H_x and Ge_2H_x species so that the newly formed $GeCH_x$ molecules (x = 1-6) can be searched for. Upon the onset of the irradiation of the ices, prominent absorption features of the well-known methylgermane molecule (H₃GeCH₃) arose at 871 cm⁻¹ (v_{10}), 1244 cm⁻¹ (v_3), and 1431 cm⁻¹ (v_9); the latter could have some contributions from the v_6 mode of ethane. The v_{10} mode (deformation mode) is evidence of the presence of the GeH₃ group; likewise, the v_3 and v_9 modes can be attributed to the CH₃ group in the methylgermane molecule. These absorptions agree nicely with those from previous experimental studies [27,28]. Other modes overlap with the absorptions from the reactant molecules or from those arising from the C_2H_x and Ge_2H_x species. Due to the positive identification of methylgermane (H₃GeCH₃) and the agreement between the absorptions from earlier and our present experimental studies, we can also utilize the calculated frequencies (Table 1) to gauge the scaling factor. Recall that scaling factors have to be implemented since the calculated frequencies are often larger than the observed frequencies. The scaling factors account for anharmonicity effects that are neglected in the theoretical calculations, an inadequate description of electron correlation, and the use of finite basis sets. The recommended value of the scaling factor is dependent on the level of theory [29] where Irikura et al. [30] have determined these values by comparing observed vibrational frequencies available through the computational chemistry comparison and benchmark database (CCCBDB; http://cccbdb.nist.gov/) with the calculated values at several levels of theory. For example, their results show that at the B3LYP/6-311G(d,p) level of theory, a recommended scaling factor of 0.967 should be used. The error is reported to be 0.02 in each case. In case of methylgermane (H₃GeCH₃), a comparison of the experimental versus the computed frequencies suggests a scaling factor of 0.974 ± 0.004 ; this scaling factor is in excellent agreement with the recommended one. Note that an exposure of the D4-methane - D4-germane matrix with energetic electrons also leads to the formation of the perdeuterated form of methylgermane: D₃GeCD₃. Here, absorptions were moni-

Fig. 3. Absorption features of methylgermane (H_3GeCH_3) and methylgermanyl radicals (H_2GeCH_3) in the irradiated germane – methane ices.

tored at 532 cm⁻¹ (v_5), 1463 cm⁻¹ (v_2), and 1479 cm⁻¹ (v_8). Once again, the positions of these absorptions are in excellent agreement with previous studies and – after scaling by 0.978 ± 0.006 – with the computed data.

Besides the methylgermane molecule (H₃GeCH₃), we also observed fundamentals which could be attributed to the methylgermyl radical (H₂GeCH₃): the v_6 mode at 839 cm⁻¹ and the v_{12} absorption at 1406 cm⁻¹; note that the 1431 cm⁻¹ absorption could arise from both the methylgermane *and* the methylgermyl radical. Here, the v_6 mode origins from the GeH₂ scissor, whereas the 1406 cm⁻¹ and 1431 cm⁻¹ absorptions are evidence of a CH₃ group in the newly formed molecule. Once again, a scaling factor Germanium-carbon-bearing species and their infrared absorptions observed in irradiated methane – germane and D4-methane – D4-germane matrices at 10 K. The identification of the species in italics must be regarded as tentatively.

Species	Frequency, cm ⁻¹	Fundamental	Frequency, cm ⁻¹	Fundamental	Species
H ₃ GeCH ₃ H ₃ GeCH ₃ H ₃ GeCH ₃	871 1244 (sh) 1431	v ₁₀ v ₃ v ₉	532 1463 1479	v ₅ v ₂ v ₈	D_3GeCD_3 D_3GeCD_3 D_3GeCD_3
H ₂ GeCH ₃	839 1406 1431	v ₆ v ₁₂ v ₄	624 1406	v ₇ v ₃	D_2GeCD_3 D_2GeCD_3
HGeCH3 HGeCH3	1230 1803	v ₅ v ₃			
GeCH3 GeCH3	536 1406	v ₉ v ₃			

of 0.973 ± 0.005 brings an excellent agreement of the computed with the experimentally observed absorptions. To confirm the formation of the methylgermyl radical, we also inspected the irradiated D4-germane – D4-methane targets. Here, absorptions at 624 cm⁻¹ (v_7) and 1406 cm⁻¹ (v_3) origin from the CD₃ and GeD₂ groups of the D5-methylgermyl radical. Note that we did not observe any absorptions of the thermodynamically less stable H₂GeCH₂ isomer.

In addition to the absorptions as discussed above, we also monitored new features at 1230 cm^{-1} , 1803 cm^{-1} , 1406 cm^{-1} , and 536 cm^{-1} (Table 4, Fig. 3). The first two bands agree nicely – after scaling – with the v_5 and v_3 fundamentals of the HGeCH₃ molecule. The 536 cm^{-1} and 1406 cm^{-1} peak could be associated with the v_9 and v_3 fundamentals of the GeCH₃ molecule. However, a look at the irradiated D4-germane – D4-methane target did not depict any absorptions of the perdeuterated DGeCD₃ and GeCD₃ molecules; the majority of the absorptions are either too weak or overlapped with the reactants or other product molecules. Therefore, the identification of the HGeCH₃ and GeCH₃ molecules – the thermodynamically most stable isomers of these series – must be regarded as tentatively; this requires further confirmation.

6. Discussion and summary

The observation of the ethane (C_2H_6) , digermane (Ge_2H_6) , and methylgermane (H₃GeCH₃) molecules suggest that the response of the irradiated ices is dictated by an electron-triggered unimolecular decomposition of the germane (GeH₄) and methane (CH₄) molecules to form the germyl (GeH₃) and methyl radicals (CH₃), respectively, plus atomic hydrogen, reactions (1) and (2), respectively. Two neighboring germyl or methyl radicals could recombine to form digermane or ethane, respectively, in a similar way as established during the irradiation of pure germane [15,16] and methane [12] matrix with energetic electrons as studied earlier in our group. Note that the digermane and ethane molecules are initially internally excited as denoted in Eqs. (3) and (4) by a $\dot{}$ but can transfer its excess energy to the surrounding matrix to be stabilized. In analogy, the observed methylgermane molecule (H₃GeCH₃) can be formed by recombination of a neighboring germyl radical with a methyl radical (Eq. (5)) via an internally excited methylgermane species.

$GeH_4 \rightarrow GeH_3 + H$ (1)	
	_		

 $CH_4 \rightarrow CH_3 + H \tag{2}$

 $2 \text{ GeH}_3 \rightarrow \left[\text{Ge}_2\text{H}_6\right]^* \rightarrow \text{Ge}_2\text{H}_6 \tag{3}$

$$2 \ CH_3 \rightarrow [C_2H_6]^* \rightarrow C_2H_6$$

$$GeH_3 + CH_3 \rightarrow [H_3GeCH_3]^* \rightarrow H_3GeCH_3$$
(5)

(4)

 $\left[H_3 \text{GeCH}_3\right]^* \to H_2 \text{GeCH}_3 + \text{H}. \tag{6}$

What are likely reaction pathways to the newly observed methylgermyl radical (H₂GeCH₃)? First, it is feasible that suprathermal hydrogen atoms, which are generated with a few eV kinetic excess energy in reactions (1) and (2), can abstract a hydrogen atom from the GeH₃ group of methylgermane (H₃GeCH₃) [31,32]. A unimolecular decomposition of the stabilized methylgermane molecule by energetic electrons can also yield the methylgermyl radical yia atomic hydrogen elimination. Alternatively, a unimolecular decomposition of internally excited methylgermane could result in a germanium – hydrogen bond rupture to form the methylgermyl radical (H₂GeCH₃) via reaction (6). Note that a unimolecular decomposition of internally excited ethane and digermane were found to lead to the formation of the ethyl [12] and digermyl radicals [15], respectively. How can we discriminate if the methylgermyl radical (H₂GeCH₃) is formed via unimolecular decomposition of internally excited methylgermane, via the hydrogen abstraction, or via radiolysis of stabilized methylgermane? Both latter pathways should form the methylgermyl radical (H₂GeCH₃) radical via higher order kinetic reaction schemes; on the other hand, the unimolecular decomposition of internally excited methylgermane should be reflected in a (pseudo) first order kinetics of the methylgermane concentration profile. Here, a kinetic fit of the temporal evolution of the methylgermane molecules, N, could be fit with (pseudo) first order kinetics, i.e. $N = N_0$ (1-e^{-(kt)}), with $N_0 = 0.9 \pm 0.1$ and $k = 7.3 \pm 1.9 \times 10^{-4} \text{ s}^{-1}$

Fig. 4. Temporal evolution of the newly synthesized methylgermyl radical (H₂GeCH₃). The black circles are the data points with error bars, whereas the red solid line presents the best kinetic fit utilizing (pseudo) first order kinetics (see text for discussion). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(Fig. 4). In summary, we can conclude, that the newly observed methylgermyl radical (H_2 GeCH₃) is likely formed via unimolecular decomposition of internally excited methylgermane molecules, which in turn were synthesized as a recombination product of germyl and methyl radicals in the 10 K matrix during the irradiation.

Acknowledgements

The experiments were supported by the NASA Space Grant administered by the University of Hawaii at Manoa (RIK, WC). RMM thanks King Saud University for financial support. Special thanks to Dr. C. Bennett (University of Hawaii) for preparing some of the figures and Dr. F. Zhang (University of Hawaii) for assistance with the references.

References

- [1] M. Ueno, Y. Saitoh, Method of producing group III-V compound semiconductor by MOCVD capable of achieving a reduced n-type carrier density, Schottky barrier diode, light emitting diode, laser diode, and method of fabricating the diodes. Application: EP. Sumitomo Electric Industries. Ltd., Japan. 2008, p. 22.
- [2] Y. Yashiki, S. Kouketsu, S. Miyajima, A. Yamada, M. Konagai, J. Non-Cryst. Solids 354 (2008) 2355.
- [3] Y. Yashiki, S. Kouketsu, S. Miyajima, A. Yamada, M. Konagai, Mater. Res. Soc. Symp. Proc. 989 (2007) 81.
- [4] Y.Y. Fang, J. Tolle, J. Tice, A.V.G. Chizmeshya, J. Kouvetakis, V.R. D'Costa, J. Menendez, Chem. Mater. 19 (2007) 5910.
- [5] A.B. Chakravarti, A. Dube, R. Loesing, D.J. Schepis, Intermediate-temperature epitaxial growth of Ge-doped carbon-silicon solid solution films on Si during

fabrication of N-doped field effect transistors, Application: US, International Business Machines Corporation, USA, 2009, p. 10.

- [6] R. Becerra et al., J. Phys. Chem. A 112 (2008) 849.
- [7] Y. Yashiki, S. Miyajima, A. Yamada, M. Konagai, Thin Solid Films 501 (2006) 202.
- [8] S. Miyajima, Y. Yashiki, A. Yamada, M. Konagai, Thin Solid Films 516 (2008) 670.
- [9] J. Dzarnoski, H.E. O'Neal, M.A. Ring, J. Am. Chem. Soc. 103 (1981) 5740.
- [10] L. Operti, M. Splendore, G.A. Vaglio, P. Volpe, Organometallics 12 (1993) 4516.
- [11] P.v.R. Schleyer, M. Kaupp, F. Hampel, M. Bremer, K. Mislow, J. Am. Chem. Soc. 114 (1992) 6791.
- [12] C.J. Bennett, C.S. Jamieson, Y. Osamura, R.I. Kaiser, Astrophys. J. 653 (2006) 792.
- [13] D. Sillars, C.J. Bennett, Y. Osamura, R.I. Kaiser, Chem. Phys. 305 (2004) 141.
- [14] D. Sillars, C.J. Bennett, Y. Osamura, R.I. Kaiser, Chem. Phys. Lett. 392 (2004) 541.
- [15] W. Carrier, W. Zheng, Y. Osamura, R.I. Kaiser, Chem. Phys. 325 (2006) 499.
- [16] W. Carrier, W. Zheng, Y. Osamura, R.I. Kaiser, Chem. Phys. 330 (2006) 275.
- [17] D.S. Sillars, C.J. Bennett, Y. Osamura, R.I. Kaiser, Chem. Phys. 315 (2005) 41.
- [18] C.J. Bennett, D. Sillars, Y. Osamura, R.I. Kaiser, Chem. Phys. Lett. 404 (2005) 327.
- [19] C.S. Jamieson, A.M. Mebel, R.I. Kaiser, Chem. Phys. Lett. 440 (2007) 105.
- [20] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
- [21] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 37 (1988) 785.
- [22] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72 (1980) 650.
- [23] J. Cizek, Adv. Chem. Phys. 14 (1969) 35.
- [24] J.A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 87 (1987) 5968.
- [25] R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96 (1992) 6796.
- [26] M.J. Frisch et al., GAUSSIAN 98, Revision A11, GAUSSIAN, Inc., Pittsburgh PA, 2002.
- [27] J.E. Griffiths, J. Chem. Phys. 38 (1963) 2879.
- [28] I.A. Oxton, J. Mol. Struct. 56 (1979) 57.
- [29] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502.
- [30] K.K. Irikura, R.D. Johnson III, R.N. Kacker, J. Phys. Chem. A 109 (2005) 8430.
- [31] Q. Zhang, D. Zhang, S. Wang, Y. Gu, J. Phys. Chem. A 106 (2002) 122.
- [32] Y.D. Orlov, G. Bouchoux, V.V. Takhistov, D.A. Ponomarev, J. Mol. Struct. 608 (2002) 109.