Chapter 8 Tro

- 1. Which one of the following situations is not ever encountered in the ground state configuration of an atom?
 - A) a \ldots 3d⁴ with 4 unpaired electrons
 - B) a \ldots 3d⁷ with 7 unpaired electrons
 - C) a \ldots 3p¹ with 1 unpaired electron
 - D) a \ldots 3d⁹ with 1 unpaired electron
 - E) a \ldots 4f⁷ with 7 unpaired electrons
- 2. Which one of the following situations is not ever encountered in the ground state configuration of an atom?
 - A) a \ldots 4p⁴ with 4 unpaired electrons
 - B) a \dots 4d⁵ with 5 unpaired electrons
 - C) a \ldots 4f⁶ with 6 unpaired electrons
 - D) a \ldots 4f³ with 3 unpaired electrons
 - E) a \ldots 4p³ with 3 unpaired electrons
- 3. A correct description for the ground state configuration of the chromium atom is
 - A) [Ar] $4s^1 3d^5$, paramagnetic
 - B) [Ar] $4s^2 3d^4$, paramagnetic
 - C) [Ar] $4s^3 3d^3$, paramagnetic
 - D) [Ar] 3d⁶, paramagnetic
 - E) [Ar] $3s^2 3d^4$, paramagnetic
- 4. Using X to indicate a filled inner core and an arrow for a valence shell electron, indicate which of the following choices is the correct ground state electronic configuration for the vanadium atom.
 - [Ar] 4s3d A) X ↑↓ $\uparrow \downarrow \uparrow$ $\uparrow\downarrow$ \uparrow ↑ ↑ B) X $\uparrow \uparrow \uparrow \uparrow \uparrow$ \uparrow C) X ↑ $\uparrow \uparrow \uparrow \uparrow$ D) X $\uparrow \downarrow \uparrow \downarrow \uparrow$ E) X

- 5. Which one of the following configurations represents a non-existent state?
 - A) [Ar] $4s^1 3d^5$
 - B) [Ar] $4s^2 3d^4$
 - C) [Xe] $5s^2 5p^1$
 - D) [Xe] $6s^2 4f^7$
 - E) [Rn] 7s²
- 6. A possible set of quantum numbers for an electron in the partially filled subshell in the gallium atom in its ground state configuration would be

	n	l	m_l	m_s
A)	3	1	0	-1/2
B)	3	1	1	1/2
C)	4	0	0	-1/2
D)	4	1	0	1/2
E)	4	2	1	1/2

7. Which one of the species below should have the largest radius?

- A) Ca
- B) Ba
- C) Al
- D) Mg
- E) C

8. Based on the position in the periodic table, which one of the following atoms would you expect to be the most electronegative?

- A) Ba
- B) Ga
- C) Mn
- D) N
- E) Si

- 9. Which one of the following is the least electronegative element of the set presented?
 - A) F
 - B) N
 - C) C
 - D) O
 - E) H

10. For which one of the processes below is ΔH largest in magnitude?

- A) $\operatorname{Li}(g) \rightarrow \operatorname{Li}^{+}(g) + e^{-}$ B) $\operatorname{B}(g) \rightarrow \operatorname{B}^{+}(g) + e^{-}$
- C) $B^{2+}(g) \rightarrow B^{3+}(g) + e^{-1}$
- D) $B^{3+}(g) \rightarrow B^{4+}(g) + e^{-1}$
- E) Be⁺(g) \rightarrow Be²⁺(g) + e⁻
- 11. The number of orbitals in a shell with n = 3 is _____
- 12. Which one of the atoms in the set: Y, Cr, Mg, N, Ba, Se, Sn has the largest first ionization energy? _____
- 13. Which one of the atoms in the set: Mg, Cr, N, Sn, Ba, Sn, Se would you expect to have the smallest first ionization energy? _____
- 14. When one thinks of an atom as being related to the region occupied by the electron cloud for the outermost electrons, a "radius" can be imagined. Typically, for an atom this "radius" would be about
 - A) 2.00 picometers
 - B) 20.0 picometers
 - C) 200 picometers
 - D) 2.00 nanometers
 - E) 20.0 nanometers
- 15. A correct description for the ground state configuration of the iron atom is
 - A) [Ar] $3s^2 3d^6$, paramagnetic
 - B) [Ar] $4s^2$ $3d^6$, diamagnetic
 - C) [Ar] $4s^1 3d^7$, paramagnetic
 - D) [Ar] 3d⁸, paramagnetic
 - E) [Ar] $4s^2 3d^6$, paramagnetic

- 16. A correct description for the ground state configuration of the selenium atom is
 - A) [Ar] $4s^1 3d^{10} 4p^5$, paramagnetic
 - B) [Ar] $4s^2 3d^{10} 4p^4$, paramagnetic
 - C) [Ar] $4s^2 3d^8 4p^6$, paramagnetic
 - D) [Ar] 3d¹⁰ 4p⁶, diamagnetic
 - E) [Ar] $4s^1 3d^9 4p^6$, paramagnetic
- 17. An atom is described as having the ground state electronic configuration, [Ar] $4s^2 3d^5 4f^2$. Which element fits the description?
 - A) one of the chalcogen family
 - B) one of the halogen family
 - C) one of the alkaline earth family
 - D) one of the lanthanide elements
 - E) there is no element which fits the description listed above
- 18. Using X to indicate a filled inner core and an arrow for a valence shell electron, indicate which of the following choices is the correct ground state electronic configuration for the sulfur atom.

[N	<u>e]</u>	<u>3s</u>	<u>3p</u>		
A)	Х	$\uparrow \downarrow$	↑	ſ	Ŷ
B)	Х	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow	\uparrow
C)	Х	\uparrow	$\uparrow\downarrow$	ſ	$\uparrow\downarrow$
D)	Х	$\uparrow\downarrow$	↑↓	, 1	`↓
E)	Х		↑↓	↑↓	↑↓

- 19. Based on the Aufbau principle and other applicable guiding principles, what ground state electronic configuration would one reasonably expect to find for technetium (Z = 43)?
 - A) [Kr] 4s² 3d⁵
 B) [Kr] 4s² 4d⁵
 C) [Kr] 4d⁷
 D) [Kr] 5s² 4d⁵
 - E) [Kr] $5s^2 5d^5$

20. Using X to indicate a filled inner core and an arrow for a valence shell electron, indicate which of the following choices is the correct ground state electronic configuration for the cobalt atom.

[]	Ar]	<u>4s</u>		2	<u>8d</u>		
A)	X	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow	
B)	Х	\uparrow	$\uparrow \downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	
C)	Х	\uparrow	$\uparrow \downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow	\uparrow
D)	Х		$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow
E)	Х	$\uparrow\downarrow$	$\uparrow\downarrow$	↑↓	↑	↑	↑

21. An otherwise unidentified element is known to have an electronic configuration, $[X]ns^2$, in its ground state. This element must be in the same family as

- A) rubidium
- B) radium
- C) radon
- D) arsenic
- E) lead
- 22. A possible set of quantum numbers for an electron in the partially filled subshell in the technetium atom in its ground state configuration would be

	п		l		m_l		m_s	
A)		3		1		0		-½
B)		3		2		1		1⁄2
C)		4		0		0		-½
D)		4		1		0		1⁄2
E)		4		2		1		1⁄2

- 23. Which one of the following statements is true?
 - A) A 3f orbital is larger (extends farther) than a 3 p orbital in a particular atom.
 - B) A 3p orbital has four lobes, one in each of the four quadrants.
 - C) A $3f_{xyz}$ has eight lobes, one in each octant.
 - D) All 3d orbitals have the same shape, just different orientations.
 - E) The 7s orbital can be represented by a sphere.
- 24. Which one of the species below should have the largest radius?
 - A) Rb
 - B) Na
 - C) Al
 - D) Ne
 - E) O
- 25. Which one of the atoms listed below has the largest value for its first ionization energy?
 - A) Al
 - B) Sr
 - C) Ga
 - D) Cr
 - E) Fr
- 26. Which one of the atoms listed below has the largest value for its electron affinity?
 - A) O
 - B) He
 - C) Ga
 - D) Cr
 - E) F
- 27. For which one of the processes below is ΔH largest in magnitude?
 - A) Be⁺(g) \rightarrow Be²⁺(g) + e⁻
 - B) Be²⁺(g) \rightarrow Be³⁺(g) + e⁻
 - C) $B^{2+}(g) \rightarrow B^{3+}(g) + e^{-}$
 - D) $C(g) \rightarrow C^+(g) + e^-$
 - E) $C^{2+}(g) \rightarrow C^{3+}(g) + e^{-}$
- 28. A particular energy level in a multielectron atom has a value of 3 for the secondary quantum number. What is the maximum number of electrons that can occupy this energy level? _____

- 29. How many unpaired electrons are there in the ground state electronic configuration for an iron atom? _____
- 30. A phototube in a photoelectric device has a photosensitive element. When this element is beamed with radiation having a wavelength of 374.2 nm, electrons are emitted. The maximum kinetic energy observed for these electrons is 1.488×10^{-19} J/electron. What is the wavelength of a laser which will turn the photocell on and cause electrons to be ejected which have absolutely no excess energy?

Answer Key

- 1. B
- 2. A
- 3. A
- 4. B 5. C
- 5. C 6. D
- 7. B
- 8. D
- 9. E
- 10. D
- 11. 9
- 12. N 13. Ba
- 13. Ва 14. С
- 14. C 15. E
- 16. B
- 17. E
- 18. B
- 19. D
- 20. E
- 21. B
- 22. E
- 23. E
- 24. A 25. A
- 23. A 26. E
- 20. L 27. B
- 28. 14
- 29.4
- 30. 520 nm