Chapter 7 Tro

- 1. The wavelength of an electromagnetic wave is
 - A) the number of complete oscillations or cycles over a distance of one meter
 - B) the number of complete oscillations or cycles in a one second time interval
 - C) the distance between successive maxima in the wave
 - D) the number of complete oscillations or cycles over a distance of one centimeter
 - E) the distance between a minimum and the nearest maximum in the oscillation
- 2. What is the wavelength of electromagnetic radiation which has a frequency of $5.732 \times 10^{14} \text{ s}^{-1}$?
 - A) 1.718 x 10²³ m
 - B) 1.912 x 10⁶ m
 - C) 5.230 x 10⁻⁷ m
 - D) 523.0 m
 - E) 5.819 x 10⁻¹⁵ nm
- 3. Which one of the following types of radiation has the lowest frequency?
 - A) FM radio waves
 - B) infrared radiation
 - C) microwave radiation
 - D) x-rays
 - E) ultraviolet rays
- 4. What is the energy, in joules, of one mole of photons associated with visible light having a wavelength of 486.1 nm?
 - A) 12.41 kJ
 - B) 2.461 x 10⁻⁴ J
 - C) 2.461 x 10⁵ J
 - D) 6.167 x 10¹⁴ J
 - E) 8.776.15 x 10²⁵ J
- 5. What is the frequency, in sec⁻¹, of radiation which has an energy of 3.371 x 10⁻¹⁹ joules per photon?
 - A) 1.697 x 10¹⁵ sec⁻¹
 - B) 5.893 x 10^{-7} sec⁻¹
 - C) 5.087 x 10¹⁴ sec⁻¹
 - D) 1.966 x 10⁻¹⁵ sec⁻¹
 - E) 6.626 x 10⁻³⁴ sec⁻¹

- 6. What is the energy, in joules, of one mole of photons whose wavelength is 5.461×10^2 nm?
 - A) 2.191 x 10⁻⁴ J
 - B) 2.437 x 10⁻¹² J
 - C) 2.191 x 10⁵ J
 - D) 1.376 x 10⁶ J
 - E) 4.06 x 10⁻¹⁹ J
- 7. Which statement among the ones presented below is true?
 - A) The spectrum of sunlight consists of a series of white lines superimposed on a colored background.
 - B) The spectrum of sunlight consists of a series of white lines superimposed on a dark background.
 - C) The spectrum of sunlight consists of a series of colored lines superimposed on a dark background.
 - D) The spectrum of sunlight consists of a series of dark lines superimposed on a colored background.
 - E) The spectrum of sunlight consists of a series of dark lines superimposed on a white background.
- 8. Calculate the frequency of the light emitted by a hydrogen atom during a transition of its electron from the energy level with n = 4 to the level with n = 1. Recall that the quantized energies of the levels in the hydrogen atom are given by:

$$E_n = -\frac{21.79 \ x \ 10^{-19}}{n^2} \text{ joule}$$

A) 1.028 x 10⁷ s⁻¹
B) 1.215 x 10⁻⁷ s⁻¹
C) 2.467 x 10¹⁵ s⁻¹
D) 3.083 x 10¹⁵ s⁻¹
E) 8.228 x 10⁶ s⁻¹

9. Calculate the wavelength of the light emitted by a hydrogen atom during a transition of its electron from the energy level with n = 6 to the level with n = 3. Recall that the quantized energies of the levels in the hydrogen atom are given by:

$$E_n = -\frac{21.79 \text{ x } 10^{-19}}{n^2} \text{ joule}$$

A) 2.954 x 10⁻⁵ m
B) 1094 nm
C) 547 nm
D) 821 nm
E) 1640 nm

- 10. Using the de Broglie relation and ignoring relativistic effects, calculate the wavelength of a 19 F⁺ ion which is moving with a speed of 4.255 x 10⁵ m/s. The mass of 19 F is 18.9984 a.m.u.
 - A) 4.936 x 10⁻¹⁷ m
 - B) 4.936 x 10⁻¹⁴ m
 - C) 1.484 x 10⁻²⁹ m
 - D) 1.484 x 10⁻²⁶ m
 - E) 4.936 x 10⁻²⁰ m
- 11. All orbitals with the same value of the principal quantum number are said
 - A) to belong to the same shell
 - B) to belong to the same subshell
 - C) to belong to the same group
 - D) to belong to the same period
 - E) to belong to the same class
- 12. The spectroscopic notation (number + letter designation) for the subshell with n = 5 and l = 3 is
 - A) 5d subshell
 - B) 5p subshell
 - C) 5f subshell
 - D) 5g subshell
 - E) 5s subshell
- 13. Given the following sets of quantum numbers for $n l m_l m_s$, which one of these sets is not a possible set for an electron in an atom?
 - $n l m_l m_s$
 - A) 3 2 2 -¹/₂
 - B) 3 1 -1 $\frac{1}{2}$
 - C) 4 3 2 ¹/₂
 - D) 4 3 -2 $-\frac{1}{2}$
 - E) 5 2 3 ¹/₂

14. A possible set of quantum numbers for an electron in the partially filled subshell in the gallium atom in its ground state configuration would be

	n	l	m_l	m_s
A)	3	1	0	-1/2
B)	3	1	1	1/2
C)	4	0	0	-1/2
D)	4	1	0	1⁄2
E)	4	2	1	1⁄2

- 15. Which one of the following types of radiation has the shortest wavelength?
 - A) FM radio waves
 - B) infrared radiation
 - C) microwave radiation
 - D) ultraviolet rays
 - E) visible light rays
- 16. Which statement among the ones presented below is true?
 - A) The line spectra of atoms consists of a series of white lines superimposed on a colored background.
 - B) The line spectra of atoms consists of a series of white lines superimposed on a dark background.
 - C) The line spectra of atoms consists of a series of colored lines superimposed on a dark background.
 - D) The line spectra of atoms consists of a series of dark lines superimposed on a white background.
 - E) The line spectra of atoms consists of a series of dark lines superimposed on a colored background.
- 17. Using the de Broglie relation, calculate the wavelength of a neutron which is moving with a speed of 4.505×10^4 m/s. The mass of the neutron is 1.008665 a.m.u.
 - A) 1.458 x 10⁻³⁸ m
 - B) 2.632 x 10⁻³ m
 - C) $4.372 \times 10^{-30} \text{ m}$
 - D) 8.781 x 10⁻¹⁵ m
 - E) 8.781 x 10⁻¹² m

- 18. The letter designation for the subshell is based on
 - A) the value of the secondary quantum number
 - B) the value of the principal quantum number
 - C) the value of the magnetic quantum number, m_l
 - D) the value of the spin quantum number, m_s
 - E) the transverse polarization of the optical emission from the H atom
- 19. All orbitals with the same value of the principal quantum number and the secondary quantum number are said
 - A) to belong to the same shell
 - B) to belong to the same subshell
 - C) to belong to the same group
 - D) to belong to the same period
 - E) to belong to the same class
- 20. Given the following sets of quantum numbers for $n l m_l m_s$, which one of these sets is not a possible set for an electron in an atom?

n		l	m_l	m_s
A)	3	2	2	1/2
B)	3	1	-1	1⁄2
C)	4	3	2	1⁄2
D)	4	4	-3	1⁄2
E)	5	2	-2	1/2

Answer Key

- 1. C
- 2. C
- 3. A
- 4. C 5. C
- 6. C
- 7. D
- 8. D
- 9. B
- 10. B
- 11. A
- 12. C 13. E
- 13. L 14. D
- 15. D
- 16. C
- 17. E
- 18. A
- 19. B
- 20. D