Chapter10 Tro

- 1. All of the geometries listed below are examples of the five basic geometries for molecules with more than 3 atoms except
 - A) planar triangular
 - B) octahedral
 - C) tetrahedral
 - D) trihedral
 - E) trigonal bipyramidal
- 2. The basic geometry for molecules in the set below which possesses the smallest bond angles is
 - A) linear
 - B) planar triangular
 - C) tetrahedral
 - D) trihedral
 - E) octahedral
- 3. Which one of the following arrangements would best accommodate three electron domains in the valence shell of a covalently bonded atom?
 - A) planar triangular
 - B) octahedral
 - C) tetrahedral
 - D) trihedral
 - E) trigonal bipyramidal
- 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is
 - A) 1
 - B) 2
 - C) 3
 - D) 4
 - E) 5
- 5. Based on the Lewis structure, the number of electron domains in the valence shell of the arsenic atom in the AsCl₃ molecule is
 - A) 1
 - B) 2
 - C) 3
 - D) 4
 - E) 5

- 6. Based on the Lewis structure, the number of electron domains in the valence shell of the carbon atom in the CO_3^{2-} ion is
 - A) 1
 - B) 2
 - C) 3
 - D) 4
 - E) 5
- 7. Based on the Lewis structure, the number of nonbonding domains in the O₃ molecule is
 - A) 3
 - B) 4
 - C) 5
 - D) 6
 - E) 7
- 8. Application of the concepts of VSEPR theory leads to the prediction that the shape of the PCl₃ molecule is
 - A) bent
 - B) linear
 - C) regular tetrahedral
 - D) triangular planar
 - E) trigonal pyramidal
- 9. The geometry of the ClF_3 molecule is best described as
 - A) distorted tetrahedral
 - B) regular tetrahedral
 - C) T-shaped
 - D) trigonal pyramidal
 - E) triangular planar
- 10. Based on conclusions from application of the VSEPR theory, which one of the following molecules is trigonal bipyramidal?
 - A) AsF₅
 - B) NF₃
 - C) SF₄
 - D) SF₆
 - E) IF_5^-

- 11. Based on conclusions from application of the VSEPR theory, which one of the following molecules or ions is bent (nonlinear)?
 - A) Cl₂O
 - B) CO_2
 - C) HCN
 - D) CO
 - E) NO_2^+
- 12. The smallest F—S—F bond angle in SF₆, in degrees, is
 - A) 90 degrees
 - B) 109.5 degrees
 - C) 120 degrees
 - D) 145 degrees
 - E) 180 degrees
- 13. The Se=C=Se molecule is a non-polar molecule because
 - A) the bonds in the molecule are all non-polar
 - B) the bonds in the molecule are polar but their effect on the overall polarity is canceled by the effect of lone pairs in the valence shell of the carbon atom
 - C) the bonds in the molecule are polar but their effect on the overall polarity is canceled by the fact that they are equal in magnitude and oppositely directed
 - D) the bonds in the molecule are polar but the polar effect is canceled by the resonance hybrids which distribute the charge evenly
 - E) the bonds in the molecule are polar but only slightly so and this is not enough to affect the polarity of the molecule as a whole
- 14. Which one of the molecules below is not polar, due to symmetric arrangement of electron domains?
 - A) SO₃
 - B) SO₂
 - C) CO
 - D) NH₃
 - E) CH_2Cl_2
- 15. Determine the expected molecular geometry and polarity of the SO₂ molecule by applying VSEPR theory.
 - A) linear, nonpolar
 - B) linear, polar
 - C) bent, 109.5° angle, polar
 - D) bent, 120° angle, polar
 - E) bent, 109.5° angle, nonpolar

- 16. Bonding in the chlorine molecule can be explained by the valence bond theory in terms of an overlap between
 - A) the 1s orbital of a chlorine atom and the 1s orbital of the other chlorine atom
 - B) the 2s orbital of a chlorine atom and the 2s orbital of the other chlorine atom
 - C) the 2p orbital of a chlorine atom and the 2p orbital of the other chlorine atom
 - D) the 3s orbital of a chlorine atom and the 3s orbital of the other chlorine atom
 - E) the 3p orbital of a chlorine atom and the 3p orbital of the other chlorine atom
- 17. Draw a Lewis structure for the NH₃ molecule. What is the hybrid orbital set used by the nitrogen atom for bonding?
 - A) sp^3d^2
 - B) sp
 - C) $sp^{3}d$
 - D) sp^3
 - E) sp^2
- 18. Which one of the following hybrid orbital sets is used by the central atom for σ -bonding in the PCl₄⁻ ion?
 - A) sp
 - B) sp^2
 - C) sp^3
 - D) $sp^{3}d$
 - E) sp^3d^2
- 19. Which one of the following hybrid orbital sets is used by the central atom for σ -bonding in the AsF₅ molecule?
 - A) sp
 - B) sp^2
 - C) sp^3
 - D) sp^3d
 - E) sp^3d^2
- 20. Which one of the following hybrid orbital sets is used by the As atom for σ -bonding in the AsF₄⁻ ion?
 - A) sp
 - B) sp²
 - C) sp^3
 - D) sp³d
 - E) sp^3d^2

21. The skeleton for the Lewis structure of thionyl chloride, SOCl₂, is shown below. Complete the Lewis structure by filling in the bonds and the remaining valence electrons which are not involved in bonds.

Ο

C1

After adjusting for formal charges, what types of orbitals are predicted to lie around the sulfur atom by the valence bond theory?

- A) 5 sp³d hybrid orbitals and no π -orbitals
- B) 4 sp³ hybrid orbitals and one localized π -orbital
- C) 4 sp³ hybrid orbitals and one delocalized π -orbital
- D) 3 sp³d hybrid orbitals and one localized π -orbital
- E) 3 sp³d hybrid orbitals and one delocalized π -orbital
- 22. How many σ -bonds and π -bonds, respectively, are there in a CO₂ molecule?
 - A) 1 σ -bonds and 2 π -bonds
 - B) 2σ -bonds and 0π -bonds
 - C) 2σ -bonds and 2π -bonds
 - D) 2 σ -bonds and 4 π -bonds
 - E) 4σ -bonds and 0π -bonds
- 23. Draw a Lewis structure for H_3C —NO₂. Both oxygen atoms are directly attached to the nitrogen atom. If you take formal charge considerations into account, how many π -bonds are there in the molecule?
 - A) 0
 - **B**) 1
 - C) 2
 - D) 3
 - E) 4
- 24. When we compare the carbon monoxide molecule with the carbon dioxide molecule, from VSEPR theory we find
 - A) CO₂ is polar and CO is non-polar
 - B) the bond in CO is weaker than the ones in CO_2
 - C) CO_2 has shorter bonds than CO
 - D) the bond order in CO is higher than the bond order in CO_2
 - E) both CO and CO₂ are non-polar

25. An energy level scheme for the valence orbitals of 2nd period homonuclear diatomic molecules lists the valence molecular orbitals in the following order of increasing energy

 $\sigma_{2s} < \sigma^*_{2s} < \sigma_{2p(x)} < \pi_{2p(y)}, \pi_{2p(z)} < \pi^*_{2p(y)}, \pi^*_{2p(z)} < \sigma^*_{2p(x)}$ Based on this energy level scheme, the bond order for the bond in the N₂⁺ ion is A) 1.0

- B) 1.5
- C) 2.0
- D) 2.5
- E) 3.0
- 26. An energy level scheme for the valence orbitals of 2nd period homonuclear diatomic molecules lists the valence molecular orbitals in the following order of increasing energy

 $\sigma_{2s} < \sigma^*_{2s} < \sigma_{2p(x)} < \pi_{2p(y)}, \pi_{2p(z)} < \pi^*_{2p(y)}, \pi^*_{2p(z)} < \sigma^*_{2p(x)}$ Based on this energy level scheme, how many electrons are there in all of the antibonding molecular orbitals of the F_2^+ ion in its ground state?

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5
- 27. An energy level scheme for the valence orbitals of 2nd period homonuclear diatomic molecules lists the valence molecular orbitals in the following order of increasing energy

 $\sigma_{2s} < \sigma^*_{2s} < \sigma_{2p(x)} < \pi_{2p(y)}, \pi_{2p(z)} < \pi^*_{2p(y)}, \pi^*_{2p(z)} < \sigma^*_{2p(x)}$ Based on this energy level scheme, which statement below is true about the bonds in the set, $O_2, O_2^+, O_2^-, O_2^{2-?}$?

- A) O_2^- has the highest bond order.
- B) O_2^{2-} has the highest bond order.
- C) O_2 has the highest bond order.
- D) O_2^+ has the highest bond order.
- E) Actually, the bond order in all these species is the same.
- 28. The SO₂ molecule is polar because the polar S—O bonds are geometrically balanced.
 - A) True
 - B) False
- 29. The hexagonal pyramid is one of the basic arrangements upon which molecular geometries are based. _____
 - A) True
 - B) False

- 30. The NH₃ molecule is polar because the polar N—H bonds are not geometrically balanced. ____
 - A) True
 - B) False

Answer Key

- 1. D
- 2. E
- 3. A
- 4. C 5. D
- 6. C
- 7. D
- 8. E
- 9. C
- 10. A
- 11. A 12. A
- 13. C
- 14. A
- 15. D
- 16. E
- 17. D 18. D
- 10. D 19. D
- 20. D
- 21. B
- 22. C 23. B
- 23. D
- 25. D
- 26. E
- 27. D
- 28. B
- 29. B 30. A